We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1.
It has been suggested that, during decisions about actions, multiple options are initially specified in parallel and then gradually eliminated in a competition for overt execution. To further test this hypothesis, we studied the modulation of human corticospinal excitability during the reaction time of the Eriksen flanker task. In the task, subjects responded with finger flexion or extension to a central arrow while ignoring congruent or incongruent flanker arrows. Single-pulse transcranial magnetic stimulation (TMS) was applied over primary motor cortex (M1) at one of five different latencies after stimulus onset, and motor-evoked potentials (MEPs) were measured in the contralateral index finger. During the control (no flankers) and congruent conditions, MEP size in the agonist increased gradually over the course of reaction time, indicating an increase in corticospinal excitability. Conversely, when the same muscle acted as an antagonist, MEP size decreased, suggesting inhibition. Critically, in the incongruent condition, MEPs briefly increased in the muscle corresponding to an initial default response to the flanker arrows and were later replaced by MEPs corresponding to the correct response to the central arrow. Finally, we found that the gradually growing MEPs for the three conditions reached a constant maximum level just before movement initiation. We propose that this dynamic modulation in corticospinal excitability reflects the competition process, leading to the selection of one response and the rejection of the other. Our results suggest that response competition influences activity in primary motor cortex and that its timing directly influences motor output latency.
It has been suggested that the underactivity of mesial frontal structures induced by dopamine depletion could constitute one of the main substrates underlying akinesia in Parkinson's disease. Functional imaging and movement-related potential recordings indicate an implication of the frontal lobes in this pathological process, but the question has not yet been investigated at a cellular level using single unit recording. We therefore compared neuronal activity in both the presupplementary motor area (pre-SMA) and the supplementary motor area proper (SMAp) of the Macaca mulatta monkey during a delayed motor task, before and after MPTP treatment. In the pre-SMA, which receives strong inputs from the prefrontal cortex, the baseline firing frequency and the percentage of neurons responding to visual instruction cues decreased in lesioned monkeys. In the SMAp, which sends direct outputs to the primary motor cortex, not only was the response to visual cues impaired, but the percentage of SMAp neurons responding to intracortical microstimulation fell and the threshold of response rose. Neuronal activity after the Go signal diminished sharply in both structures in the symptomatic animal and the discharge pattern became more irregular; in the SMAp neuronal activity remained modified longer. Most of these changes could already be observed in the presymptomatic animal presenting no clinical signs of parkinsonism. These data would indicate that, at the moment when dopamine depletion has impaired the ability of cortical neurons to operate the focused selection of incoming information giving instructions for movement, pre-SMA and SMAp neurons are also in a state of severe hypoactivity. The conjunction of these phenomena could play a critical role in the genesis of akinesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.