Bloom and cuckoo filters provide fast approximate set membership while using little memory. Engineers use them to avoid expensive disk and network accesses. The recently introduced xor filters can be faster and smaller than Bloom and cuckoo filters. The xor filters are within 23% of the theoretical lower bound in storage as opposed to 44% for Bloom filters. Inspired by Dietzfelbinger and Walzer, we build probabilistic filters—called binary fuse filters —that are within 13% of the storage lower bound—without sacrificing query speed. As an additional benefit, the construction of the new binary fuse filters can be more than twice as fast as the construction of xor filters. By slightly sacrificing query speed, we further reduce storage to within 8% of the lower bound. We compare the performance against a wide range of competitive alternatives such as Bloom filters, blocked Bloom filters, vector quotient filters, cuckoo filters, and the recent ribbon filters. Our experiments suggest that binary fuse filters are superior to xor filters.
A minimal perfect hash function bijectively maps a key set out of a universe into the first | | natural numbers. Minimal perfect hash functions are used, for example, to map irregularly-shaped keys, such as strings, in a compact space so that metadata can then be simply stored in an array. While it is known that just 1.44 bits per key are necessary to store a minimal perfect hash function, no published technique can go below 2 bits per key in practice. We propose a new technique for storing minimal perfect hash functions with expected linear construction time and expected constant lookup time that makes it possible to build for the first time, for example, structures which need 1.56 bits per key, that is, within 8.3% of the lower bound, in less than 2 ms per key. We show that instances of our construction are able to simultaneously beat the construction time, space usage and lookup time of the state-of-the-art data structure reaching 2 bits per key. Moreover, we provide parameter choices giving structures which are competitive with alternative, larger-size data structures in terms of space and lookup time. The construction of our data structures can be easily parallelized or mapped on distributed computational units (e.g., within the MapReduce framework), and structures larger than the available RAM can be directly built in mass storage.
The Bloom filter provides fast approximate set membership while using little memory. Engineers often use these filters to avoid slow operations such as disk or network accesses. As an alternative, a cuckoo filter may need less space than a Bloom filter and it is faster. Chazelle et al. proposed a generalization of the Bloom filter called the Bloomier filter. Dietzfelbinger and Pagh described a variation on the Bloomier filter that can answer approximate membership queries over immutable sets. It has never been tested empirically, to our knowledge. We review an efficient implementation of their approach, which we call the xor filter. We find that xor filters can be faster than Bloom and cuckoo filters while using less memory. We further show that a more compact version of xor filters (xor+) can use even less space than highly compact alternatives (e.g., Golomb-compressed sequences) while providing speeds competitive with Bloom filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.