Very little is known about marine mammal susceptibility to primary blast injury (PBI) except in rare cases of opportunistic studies. As a result, traditional analysis techniques relied on methods developed more than 30 years ago using terrestrial mammals as surrogates. Modeling tools available today have the computing power to vastly improve calculation of safe ranges and injury zones from underwater explosions (UNDEX) employing morphologically accurate proxies with material properties similar to marine mammal tissues. The Dynamic System Mechanics Advanced Simulation (DYSMAS) fluid–structure interaction (FSI) software is being used to simulate the complex phenomena of UNDEX, shock wave, and bubble pulse propagation through the water and transmission of energy to a cetacean focusing on the dynamic response of the thoracic cavity and air‐filled lungs to a shock wave. The approach integrates fluid and structural analyses with the material properties of blubber, bone, and muscle using marine mammal morphometrics to eliminate unnecessary assumptions made during more traditional approaches to analysis developed before these types of data and computational power were available. DYSMAS analyses of a 1D gas bubble surrounded by water was found to closely match the classical bubble dynamics models. Further, DYSMAS models of a spherical gas bubble surrounded by tissue and rib structure demonstrate a global radial oscillation of the gas bubble, but also show significant local deflection and material strain in response to the UNDEX loading. The intended result of the investigation is an improved and scientifically defensible understanding of the effects of UNDEX on marine mammals. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:718–734, 2019. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Public reporting for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
Primary blast injury (PBI), which relates gross blast-related trauma or traces of injury in air-filled tissues or those tissues adjacent to air-filled regions (rupture/lesions, contusions, hemorrhaging), has been documented in a number of marine mammal species after blast exposure [1, 2, 3]. However, very little is known about marine mammal susceptibility to PBI except in rare cases of opportunistic studies. As a result, traditional techniques rely on analyses using small-scale terrestrial mammals as surrogates for large-scale marine mammals. For an In-house Laboratory Independent Research (ILIR) project sponsored by the Office of Naval Research (ONR), researchers at the Naval Undersea Warfare Center, Division Newport (NUWCDIVNPT), have undertaken a broad 3-year effort to integrate computational fluid-structure interaction techniques with marine mammal anatomical structure. The intent is to numerically simulate the dynamic response of a marine mammal thoracic cavity and air-filled lungs to shock loading, to enhance understanding of marine mammal lungs to shock loading in the underwater environment. In the absence of appropriate test data from live marine mammals, a crucial part of this work involves code validation to test data for a suitable surrogate test problem. This research employs a surrogate of an air-filled spherical membrane structure subjected to shock loading as a first order approximation to understanding marine mammal lung response to underwater explosions (UNDEX). This approach incrementally improves upon the currently used one-dimensional spherical air bubble approximation to marine mammal lung response by providing an encapsulating boundary for the air. The encapsulating structure is membranous, with minimal simplified representation not accounting for marine mammal species-specific and individual animal differences in tissue composition, rib mechanics, and mechanical properties of interior lung tissue. NUWCDIVNPT partnered with the Naval Submarine Medical Research Laboratory (NSMRL) to design and execute a set of experiments to investigate the shock response of an air-filled rubber dodgeball in a shallow underwater environment. These tests took place in the 2.13 m (7-ft) diameter pressure tank at the University of Rhode Island, with test measurements including pressure data and digital image correlation (DIC) data captured with high-speed cameras in a stereo setup. The authors developed 3-dimensional computational models of the dodgeball experiments using Dynamic System Mechanics Advanced Simulation (DYSMAS), a Navy fluid-structure interaction code. DYSMAS models of a variety of different problems involving submerged pressure vessel structures responding to hydrostatic and/or UNDEX loading have been validated against test data [4]. Proper validation of fluid structure interaction simulations is quite challenging, requiring measurements in both the fluid and structure domains. This paper details the development of metrics for comparison between test measurements and simulation results, with a discussion of potential sources of uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.