The [lambda]-calculus provides a simple, well-established framework for research in functional programming languages that readily lends itself to the use offormal methods--that is, the use of mathematically sound techniques and supporting tools--to describe and verify properties of programming languages, as well. This is no coincidence. After all, the [lambda]-calculus formalizes the concept of effective computability, for all computable functions are definable in the untyped [lambda]-calculus, making it expressively equivalent torecursive functions. In software, the expressiveness of functional languages is considereda strength. Functional approaches to language design, however, needn't be limited to soft-ware. In hardware, the expressiveness of functional languages becomes a major obstacle to successful hardware synthesis, for the reason that such languages are usually capable of expressing general recursion. The presence of general recursion makes it possible to generate expressions that run forever, never producing a well-defined value. In this dissertation, we study two novel variants of the simply typed [lambda]-calculus, representing fragments of functional hardware description languages. The first variant extends the type system, using natural numbers representing time. This addition, though simple, is non-trivial. We prove that this calculus possesses bounded variants of type-safety and strong normalization. That is to say, we show that all well-typed expressions evaluate to values within a bound determined by the natural number index of their corresponding types. The second variant is a computational [lambda]-calculus that formalizes the core fragment of the hardware description language known as ReWire. We prove that the language has type-safety and is strongly normalizing -- the proof of strong normalizationis the first mechanized proof of its kind. We define an equational theory with respect to this language. This allows us to prove that the language has desirable security properties by construction. This work supports a full-edged, formal methodology for producing high assurance hardware.
Constructing high-assurance, secure hardware remains a challenge, because to do so relies on both a verifiable means of hardware description and implementation. However, production hardware description languages (HDL) lack the formal underpinnings required by formal methods in security. Still, there is no such thing as high-assurance systems without high-assurance hardware. We present a core calculus of secure hardware description with its formal semantics, security type system, and mechanization in Coq. This calculus is the core of the functional HDL, ReWire, shown in previous work to have useful applications in reconfigurable computing. This work supports a full-fledged, formal methodology for producing high-assurance hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.