Glycosylphosphatidylinositol (GPI)-anchored proteins coat the surface of extracellular Plasmodium falciparum merozoites, of which several are highly validated candidates for inclusion in a blood-stage malaria vaccine. Here we determined the proteome of gradient-purified detergent-resistant membranes of mature bloodstage parasites and found that these membranes are greatly enriched in GPI-anchored proteins and their putative interacting partners. Also prominent in detergent-resistant membranes are apical organelle (rhoptry), multimembrane-spanning, and proteins destined for export into the host erythrocyte cytosol. Four new GPIanchored proteins were identified, and a number of other novel proteins that are predicted to localize to the merozoite surface and/or apical organelles were detected. Three of the putative surface proteins possessed six-cysteine (Cys 6 ) motifs, a distinct fold found in adhesive surface proteins expressed in other life stages. All three Cys 6 proteins, termed Pf12, Pf38, and Pf41, were validated as merozoite surface antigens recognized strongly by antibodies present in naturally infected individuals. In addition to the merozoite surface, Pf38 was particularly prominent in the secretory apical organelles. A different cysteine-rich putative GPI-anchored protein, Pf92, was also localized to the merozoite surface. This insight into merozoite surfaces provides new opportunities for understanding both erythrocyte invasion and anti-parasite immunity.Developing a vaccine to control human malaria is a global health priority. The recent availability of the genome sequence of the protozoan parasite Plasmodium falciparum, the major cause of malaria, allows the use of genomic technologies such as microarray and proteomics to identify novel vaccine and drug targets (1-5). Most membrane proteins that coat the surface of the erythrocyte-invasive merozoite form of the parasite are attached to the plasma membrane via a C-terminal glycosylphosphatidylinositol (GPI) 5 anchor. To date, four GPI-anchored merozoite surface proteins (MSP-1, -2, -4, and -5) have been identified, and two others (MSP-10 and rhoptry-associated membrane antigen (RAMA)) appear to reside at least in part in organelles at the apical end of the parasite (6 -10). Another protein originally localized to the merozoite surface, MSP-8, appears to instead reside in the ring stage (11). Most other merozoite surface proteins (e.g. MSP-3/6 family members, MSP-7, and acidic basic repeat antigen (ABRA)) are not directly membrane-associated but are indirectly linked to the surface, probably in most cases via interactions with GPI-anchored proteins (12-15). In contrast to the apical and peripheral classes of bloodstage antigens, the GPI-anchored proteins appear to be essential to blood-stage growth with repeated attempts to genetically disrupt six GPI-anchored merozoite proteins resulting in only one "knock-out," that of the msp-5 gene (16). 6 This, together with considerable data highlighting their potential as targets of protective antibodies, place...
Most proteins that coat the surface of the extracellular forms of the human malaria parasite Plasmodium falciparum are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors. These proteins are exposed to neutralizing antibodies, and several are advanced vaccine candidates. To identify the GPI-anchored proteome of P. falciparum we used a combination of proteomic and computational approaches. Focusing on the clinically relevant blood stage of the life cycle, proteomic analysis of proteins labeled with radioactive glucosamine identified GPI anchoring on 11 proteins (merozoite surface protein (MSP)-1, -2, -4, -5, -10, rhoptry-associated membrane antigen, apical sushi protein, Pf92, Pf38, Pf12, and Pf34). These proteins represent ϳ94% of the GPIanchored schizont/merozoite proteome and constitute by far the largest validated set of GPI-anchored proteins in this organism. Moreover MSP-1 and MSP-2 were present in similar copy number, and we estimated that together these proteins comprise approximately two-thirds of the total membrane-associated surface coat. This is the first time the stoichiometry of MSPs has been examined. We observed that available software performed poorly in predicting GPI anchoring on P. falciparum proteins where such modification had been validated by proteomics. Therefore, we developed a hidden Markov model (GPI-HMM) trained on P. falciparum sequences and used this to rank all proteins encoded in the completed P. falciparum genome according to their likelihood of being GPIanchored. GPI-HMM predicted GPI modification on all validated proteins, on several known membrane proteins, and on a number of novel, presumably surface, proteins expressed in the blood, insect, and/or pre-erythrocytic stages of the life cycle. Together this work identified 11
Plasma membranes are organized into functional domains both by liquid-ordered packing into "lipid rafts," structures that resist Triton extraction, and by attachments to underlying cytoskeletal proteins in assemblies called "membrane skeletons." Although the actin cytoskeleton is implicated in many lipid raft-mediated signaling processes, little is known about the biochemical basis for actin involvement. We show here that a subset of plasma membrane skeleton proteins from bovine neutrophils co-isolates with cholesterol-rich, detergent-resistant membrane fragments (DRMs) that exhibit a relatively high buoyant density in sucrose (DRM-H; d ϳ1.16 g/ml). By using matrix-assisted laser desorption/ionization time of flight and tandem mass spectrometry, we identified 19 major DRM-H proteins. Membrane skeleton proteins include fodrin (nonerythroid spectrin), myosin-IIA, myosin-IG, ␣-actinin 1, ␣-actinin 4, vimentin, and the F-actin-binding protein, supervillin. Other DRM-H components include lipid raft-associated integral membrane proteins (stomatin, flotillin 1, and flotillin 2), extracellular surface-bound and glycophosphatidylinositol-anchored proteins (IgM, membrane-type 6 matrix metalloproteinase), and intracellular dually acylated signaling proteins (Lyn kinase, G␣ i-2 ). Consistent with cytoskeletal association, most DRM-H-associated flotillin 2, Lyn, and G␣ i-2 also resist extraction with 0.1 M octyl glucoside. Supervillin, myosin-IG, and myosin-IIA resist extraction with 0.1 M sodium carbonate, a treatment that removes all detectable actin, suggesting that these cytoskeletal proteins are proximal to the DRM-H bilayer. Binding of supervillin to the DRM-H fragments is confirmed by co-immunoaffinity purification. In spreading neutrophils, supervillin localizes with F-actin in cell extensions and in discrete basal puncta that partially overlap with G␣ i staining. We suggest that the DRM-H fraction represents a membrane skeleton-associated subset of leukocyte signaling domains.
Plasmodium falciparum parasites in the merozoite stage invade human erythrocytes and cause malaria. Invasion requires multiple interactions between merozoite ligands and erythrocyte receptors. P. falciparum reticulocyte binding homolog 5 (PfRh5) forms a complex with the PfRh5-interacting protein (PfRipr) and Cysteine-rich protective antigen (CyRPA) and binds erythrocytes via the host receptor basigin. However, the specific role that PfRipr and CyRPA play during invasion is unclear. Using P. falciparum lines conditionally expressing PfRipr and CyRPA, we show that loss of PfRipr or CyRPA function blocks growth due to the inability of merozoites to invade erythrocytes. Super-resolution microscopy revealed that PfRipr, CyRPA, and PfRh5 colocalize at the junction between merozoites and erythrocytes during invasion. PfRipr, CyRPA, and PfRipr/CyRPA/PfRh5-basigin complex is required for triggering the Ca(2+) release and establishing the tight junction. Together, these results establish that the PfRh5/PfRipr/CyRPA complex is essential in the sequential molecular events leading to parasite invasion of human erythrocytes.
Plasmodium falciparum exports several hundred effector proteins that remodel the host erythrocyte and enable parasites to acquire nutrients, sequester in the circulation and evade immune responses. The majority of exported proteins contain the Plasmodium export element (PEXEL; RxLxE/Q/D) in their N-terminus, which is proteolytically cleaved in the parasite endoplasmic reticulum by Plasmepsin V, and is necessary for export. Several exported proteins lack a PEXEL or contain noncanonical motifs. Here, we assessed whether Plasmepsin V could process the N-termini of diverse protein families in P. falciparum. We show that Plasmepsin V cleaves N-terminal sequences from RIFIN, STEVOR and RESA multigene families, the latter of which contain a relaxed PEXEL (RxLxxE). However, Plasmepsin V does not cleave the N-terminal sequence of the major exported virulence factor erythrocyte membrane protein 1 (PfEMP1) or the PEXEL-negative exported proteins SBP-1 or REX-2. We probed the substrate specificity of Plasmepsin V and determined that lysine at the PEXEL P3 position, which is present in PfEMP1 and other putatively exported proteins, blocks Plasmepsin V activity. Furthermore, isoleucine at position P1 also blocked Plasmepsin V activity. The specificity of Plasmepsin V is therefore exquisitely confined and we have used this novel information to redefine the predicted P. falciparum PEXEL exportome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.