This article presents a simple and easily implementable Bayesian approach to model and quantify uncertainty in small descriptive social networks. While statistical methods for analyzing networks have seen burgeoning activity over the last decade or so, ranging from social sciences to genetics, such methods usually involve sophisticated stochastic models whose estimation requires substantial structure and information in the networks. At the other end of the analytic spectrum, there are purely descriptive methods based upon quantities and axioms in computational graph theory. In social networks, popular descriptive measures include, but are not limited to, the so called Krackhardt’s axioms. Another approach, recently gaining attention, is the use of PageRank algorithms. While these descriptive approaches provide insight into networks with limited information, including small networks, there is, as yet, little research detailing a statistical approach for small networks. This article aims to contribute at the interface of Bayesian statistical inference and social network analysis by offering practicing social scientists a relatively straightforward Bayesian approach to account for uncertainty while conducting descriptive social network analysis. The emphasis is on computational feasibility and easy implementation using existing R packages, such as sna and rjags, that are available from the Comprehensive R Archive Network (https://cran.r-project.org/). We analyze a network comprising 18 websites from the US and UK to discern transnational identities, previously analyzed using descriptive graph theory with no uncertainty quantification, using fully Bayesian model-based inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.