Tuft dendrites are the main target for feedback inputs innervating neocortical layer 5 pyramidal neurons, but their properties remain obscure. We report the existence of N-methyl-D-aspartate (NMDA) spikes in the fine distal tuft dendrites that otherwise did not support the initiation of calcium spikes. Both direct measurements and computer simulations showed that NMDA spikes are the dominant mechanism by which distal synaptic input leads to firing of the neuron and provide the substrate for complex parallel processing of top-down input arriving at the tuft. These data lead to a new unifying view of integration in pyramidal neurons in which all fine dendrites, basal and tuft, integrate inputs locally through the recruitment of NMDA receptor channels relative to the fixed apical calcium and axosomatic sodium integration points.
Basal dendrites receive the majority of synapses that contact neocortical pyramidal neurons, yet our knowledge of synaptic processing in these dendrites has been hampered by their inaccessibility for electrical recordings. A new approach to patch-clamp recordings enabled us to characterize the integrative properties of these cells. Despite the short physical length of rat basal dendrites, synaptic inputs were electrotonically remote from the soma (>30-fold excitatory postsynaptic potential (EPSP) attenuation) and back-propagating action potentials were significantly attenuated. Unitary EPSPs were location dependent, reaching large amplitudes distally (>8 mV), yet their somatic contribution was relatively location independent. Basal dendrites support sodium and NMDA spikes, but not calcium spikes, for 75% of their length. This suggests that basal dendrites, despite their proximity to the site of action potential initiation, do not form a single basal-somatic region but rather should be considered as a separate integrative compartment favoring two integration modes: subthreshold, location-independent summation versus local amplification of incoming spatiotemporally clustered information.
Endocannabinoid mediated spike timing-dependent depression (t-LTD) is crucially involved in the development of the sensory neocortex. t-LTD at excitatory synapses in the developing rat barrel cortex requires cannabinoid CB(1) receptor (CB(1)R) activation, as well as activation of NMDA receptors located on the presynaptic terminal, but the exact signaling cascade leading to t-LTD remains unclear. We found that astrocytes are critically involved in t-LTD. Astrocytes gradually increased their Ca(2+) signaling specifically during the induction of t-LTD in a CB(1)R-dependent manner. In this way, astrocytes might act as a memory buffer for previous coincident neuronal activity. Following activation, astrocytes released glutamate, which activated presynaptic NMDA receptors to induce t-LTD. Astrocyte stimulation coincident with afferent activity resulted in long-term depression, indicating that astrocyte activation is sufficient for the induction of synaptic depression. Taken together, our findings describe the retrograde signaling cascade underlying neocortical t-LTD. The critical involvement of astrocytes in this process highlights their importance for experience-dependent sensory remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.