Summary Sparse coding presents practical advantages for sensory representations and memory storage. In the insect olfactory system, the representation of general odors is dense in the antennal lobes but sparse in the mushroom bodies, only one synapse downstream. In locusts, this transformation relies on the oscillatory structure of antennal lobe output, feed-forward inhibitory circuits, intrinsic properties of mushroom body neurons, and connectivity between antennal lobe and mushroom bodies. Here we show the existence of a normalizing negative feedback loop within the mushroom body to maintain sparse output over a wide range of input conditions. This loop consists of an identifiable “giant” nonspiking inhibitory interneuron with ubiquitous connectivity and graded release properties.
Actions of inhibitory interneurons organize and modulate many neuronal processes, yet the mechanisms and consequences of plasticity of inhibitory synapses remain poorly understood. We report on spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. After pairing presynaptic stimulations at time t(pre) with evoked postsynaptic spikes at time t(post) under pharmacological blockade of excitation we found, via whole cell recordings, an asymmetrical timing rule for plasticity of the remaining inhibitory responses. Strength of response varied as a function of the time interval Deltat = t(post) - t(pre): for Deltat > 0 inhibitory responses potentiated, peaking at a delay of 10 ms. For Deltat < 0, the synaptic coupling depressed, again with a maximal effect near 10 ms of delay. We also show that changes in synaptic strength depend on changes in intracellular calcium concentrations and demonstrate that the calcium enters the postsynaptic cell through voltage-gated channels. Using network models, we demonstrate how this novel form of plasticity can sculpt network behavior efficiently and with remarkable flexibility.
Large-scale numerical simulations of detailed brain circuit models are important for identifying hypotheses on brain functions and testing their consistency and plausibility. An ongoing challenge for simulating realistic models is, however, computational speed. In this paper, we present the GeNN (GPU-enhanced Neuronal Networks) framework, which aims to facilitate the use of graphics accelerators for computational models of large-scale neuronal networks to address this challenge. GeNN is an open source library that generates code to accelerate the execution of network simulations on NVIDIA GPUs, through a flexible and extensible interface, which does not require in-depth technical knowledge from the users. We present performance benchmarks showing that 200-fold speedup compared to a single core of a CPU can be achieved for a network of one million conductance based Hodgkin-Huxley neurons but that for other models the speedup can differ. GeNN is available for Linux, Mac OS X and Windows platforms. The source code, user manual, tutorials, Wiki, in-depth example projects and all other related information can be found on the project website http://genn-team.github.io/genn/.
We propose a theoretical framework for odor classification in the olfactory system of insects. The classification task is accomplished in two steps. The first is a transformation from the antennal lobe to the intrinsic Kenyon cells in the mushroom body. This transformation into a higher-dimensional space is an injective function and can be implemented without any type of learning at the synaptic connections. In the second step, the encoded odors in the intrinsic Kenyon cells are linearly classified in the mushroom body lobes. The neurons that perform this linear classification are equivalent to hyperplanes whose connections are tuned by local Hebbian learning and by competition due to mutual inhibition. We calculate the range of values of activity and size of the network required to achieve efficient classification within this scheme in insect olfaction. We are able to demonstrate that biologically plausible control mechanisms can accomplish efficient classification of odors.
While neuromorphic systems may be the ultimate platform for deploying spiking neural networks (SNNs), their distributed nature and optimization for specific types of models makes them unwieldy tools for developing them. Instead, SNN models tend to be developed and simulated on computers or clusters of computers with standard von Neumann CPU architectures. Over the last decade, as well as becoming a common fixture in many workstations, NVIDIA GPU accelerators have entered the High Performance Computing field and are now used in 50 % of the Top 10 super computing sites worldwide. In this paper we use our GeNN code generator to re-implement two neo-cortex-inspired, circuit-scale, point neuron network models on GPU hardware. We verify the correctness of our GPU simulations against prior results obtained with NEST running on traditional HPC hardware and compare the performance with respect to speed and energy consumption against published data from CPU-based HPC and neuromorphic hardware. A full-scale model of a cortical column can be simulated at speeds approaching 0.5× real-time using a single NVIDIA Tesla V100 accelerator—faster than is currently possible using a CPU based cluster or the SpiNNaker neuromorphic system. In addition, we find that, across a range of GPU systems, the energy to solution as well as the energy per synaptic event of the microcircuit simulation is as much as 14× lower than either on SpiNNaker or in CPU-based simulations. Besides performance in terms of speed and energy consumption of the simulation, efficient initialization of models is also a crucial concern, particularly in a research context where repeated runs and parameter-space exploration are required. Therefore, we also introduce in this paper some of the novel parallel initialization methods implemented in the latest version of GeNN and demonstrate how they can enable further speed and energy advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.