SignificanceWhile widely known as the molecule of life, DNA is also an amazing building block at the nanoscale, since it allows us to design and program the structure and dynamics of functional nanomaterials. We exploit the programmability of DNA to achieve control over the rheology of self-assembled hydrogels, which have elastic or viscous behavior (similar to that of slime) that is finely regulated by temperature. Using microrheology to investigate the mechanical properties of DNA hydrogels at the microlength scale, we map the viscoelastic response over a broad range of frequencies and temperatures. The deep understanding in the fundamental physics provides a way to design DNA-based materials with precise control over the structure stability and rigidity at molecular level.
Three-dimensional DNA networks, composed of tri-or higher valent nanostars with sticky, single-stranded DNA overhangs, have been previously studied in the context of designing thermally responsive, viscoelastic hydrogels. In this work, we use linker-mediated gels, where the sticky ends of two trivalent nanostars are connected through the complementary sticky ends of a linear DNA duplex. We can design this connection to be either rigid or flexible by introducing flexible, non-binding bases. The additional flexiblity provided by these non-binding bases influences the effective elasticity of the percolating gel formed at low temperatures. Here we show that by choosing the right length of the linear duplex and non-binding flexible joints, we obtain a completely different phase behaviour to that observed for rigid linkers. In particular, we use dynamic light scattering as microrheological tool to monitor the self-assembly of DNA nanostars with linear linkers as a function of temperature. While we observe classical gelation when using rigid linkers, the presence of flexible joints leads to a cluster fluid with reduced viscosity. Using both the oxDNA model and a coarse-grained simulation to investigate the nanostar-linker topology, we hypothesise on the possible structure formed by the DNA clusters.
Acrylic acid has been grafted from aqueous solution onto 70 μ isotactic polypropylene‐film previously peroxidized by irradiating in air with both 400 keV electrons and γ‐radiation from a 60Co source. Ferrous ion has been used to induce the redox decomposition of the macromolecular peroxy species at temperatures between 0 and 40°C. It has been shown that the effect of low [Fe2+] is to increase grafting rates, but that at [Fe2+] > 8 × 10−4 molal the retarding effect of the reducing ion becomes increasingly important. At constant [Fe2+] a pronounced maximum in rate is observed at around 50 wt‐% of acrylic acid; this may be related to increased swelling of the polymer matrix at this point. The initial rate of grafting increases as the square root of the preirradiation dose and, in the preirradiation dose rate range, 1.6–8.0 Mrad/sec, is independent of the dose rate. The grafting rate during the later stages of the reaction, however, increases as the preirradiation dose rate decreases. In the temperature range 0–40°C, the overall activation energy is 19 kcal/mole; from this value, the activation energy of initiation has been estimated to be around 20 kcal/mole.
Many industrial soft materials include oil-in-water (O/W) emulsions at the core of their formulations. By using tuneable interface stabilizing agents, such emulsions can self-assemble into complex structures. DNA has been used for decades as a thermoresponsive, highly specific binding agent between hard and, recently, soft colloids. Up until now, emulsion droplets functionalized with DNA had relatively low coating densities and were expensive to scale up. Here, a general O/W DNA-coating method using functional nonionic amphiphilic block copolymers, both diblock and triblock, is presented. The hydrophilic poly(ethylene glycol) ends of the surfactants are functionalized with azides, allowing for efficient, dense, and controlled coupling of dibenzocyclooctane-functionalized DNA to the polymers through a strain-promoted alkyne-azide click reaction. The protocol is readily scalable due to the triblock's commercial availability. Different production methods (ultrasonication, microfluidics, and membrane emulsification) are used with different oils (hexadecane and silicone oil) to produce functional droplets in various size ranges (submicron, ∼20 and >50 μm), showcasing the generality of the protocol. Thermoreversible submicron emulsion gels, hierarchical "raspberry" droplets, and controlled droplet release from a flat DNA-coated surface are demonstrated. The emulsion stability and polydispersity is evaluated using dynamic light scattering and optical microscopy. The generality and simplicity of the method opens up new applications in soft matter, biotechnological research, and industrial advances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.