BACKGROUND: COVID-19 predisposes patients to a prothrombotic state with demonstrated microvascular involvement. The degree of hypercoagulability appears to correlate with outcomes; however, optimal criteria to assess for the highest-risk patients for thrombotic events remain unclear; we hypothesized that deranged thromboelastography measurements of coagulation would correlate with thromboembolic events. STUDY DESIGN: Patients admitted to an ICU with COVID-19 diagnoses who had thromboelastography analyses performed were studied. Conventional coagulation assays, D-dimer levels, and viscoelastic measurements were analyzed using a receiver operating characteristic curve to predict thromboembolic outcomes and new-onset renal failure. RESULTS:Forty-four patients with COVID-19 were included in the analysis. Derangements in coagulation laboratory values, including elevated D-dimer, fibrinogen, prothrombin time, and partial thromboplastin time, were confirmed; viscoelastic measurements showed an elevated maximum amplitude and low lysis of clot at 30 minutes. A complete lack of lysis of clot at 30 minutes was seen in 57% of patients and predicted venous thromboembolic events with an area under the receiver operating characteristic curve of 0.742 (p ¼ 0.021). A D-dimer cutoff of 2,600 ng/mL predicted need for dialysis with an area under the receiver operating characteristic curve of 0.779 (p ¼ 0.005). Overall, patients with no lysis of clot at 30 minutes and a D-dimer > 2,600 ng/mL had a venous thromboembolic event rate of 50% compared with 0% for patients with neither risk factor (p ¼ 0.008), and had a hemodialysis rate of 80% compared with 14% (p ¼ 0.004). CONCLUSIONS: Fibrinolysis shutdown, as evidenced by elevated D-dimer and complete failure of clot lysis at 30 minutes on thromboelastography predicts thromboembolic events and need for hemodialysis in critically ill patients with COVID-19. Additional clinical trials are required to ascertain the need for early therapeutic anticoagulation or fibrinolytic therapy to address this state of fibrinolysis shutdown.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage ؊ /CD34 ؉ /CD38 ؊ /CD90 ؉ ) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is
SummaryA dominant histopathological feature in neuromuscular diseases including amyotrophic lateral sclerosis and inclusion body myopathy is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare protein-misfolding mutations in TDP-43 often cause protein aggregation, most patients do not have a TDP-43 mutation suggesting aggregates of wild-type TDP-43 arise by an unknown mechanism. Here we show TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, termed myo-granules, during skeletal muscle regeneration in mice and humans. Myo-granules bind mRNAs encoding sarcomeric proteins and are cleared as myofibers mature. Although myo-granules occur during normal skeletal muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro, and are increased in a mouse model of inclusion body myopathy. Therefore, heightened assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates common to neuromuscular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.