In this paper we forecast daily returns of crypto‐currencies using a wide variety of different econometric models. To capture salient features commonly observed in financial time series like rapid changes in the conditional variance, non‐normality of the measurement errors and sharply increasing trends, we develop a time‐varying parameter VAR with t‐distributed measurement errors and stochastic volatility. To control for overparametrization, we rely on the Bayesian literature on shrinkage priors, which enables us to shrink coefficients associated with irrelevant predictors and/or perform model specification in a flexible manner. Using around one year of daily data, we perform a real‐time forecasting exercise and investigate whether any of the proposed models is able to outperform the naive random walk benchmark. To assess the economic relevance of the forecasting gains produced by the proposed models we, moreover, run a simple trading exercise.
This paper proposes a hierarchical modeling approach to perform stochastic model specification in Markov switching vector error correction models. We assume that a common distribution gives rise to the regime-specific regression coefficients. The mean as well as the variances of this distribution are treated as fully stochastic and suitable shrinkage priors are used. These shrinkage priors enable to assess which coefficients differ across regimes in a flexible manner. In the case of similar coefficients, our model pushes the respective regions of the parameter space towards the common distribution. This allows for selecting a parsimonious model while still maintaining sufficient flexibility to control for sudden shifts in the parameters, if necessary. We apply our modeling approach to real-time Euro area data and assume transition probabilities between expansionary and recessionary regimes to be driven by the cointegration errors. The results suggest that the regime allocation is governed by a subset of short-run adjustment coefficients and regime-specific variance-covariance matrices. These findings are complemented by an out-of-sample forecast exercise, illustrating the advantages of the model for predicting Euro area inflation in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.