BackgroundSupraglottic devices are helpful for inexperienced providers who perform ventilation in emergency situations. Most supraglottic devices do not allow secondary tracheal intubation through the device. The novel intubating laryngeal tube (iLTS-D®) and the intubating laryngeal mask (Fastrach™) are devices that offer supraglottic ventilation and secondary tracheal intubation.MethodsWe evaluated the novel iLTS-D and compared it to the established Fastrach using a manikin-based study. Participants used both devices in a randomised order. The participants conducted four consecutive trials on a manikin. One trial was composed of the following procedures. First, participants ventilated the manikin using either iLTS-D or Fastrach. ‘Time to ventilation’, success rates and number of attempts were recorded for the supraglottic device. Second, participants intubated the manikin through the previously inserted supraglottic device. ‘Time to tracheal ventilation’, success rate and tube localisation were recorded. The primary endpoint was the results of the final fourth trial, which mirrored the standardised training of trials 1, 2 and 3.ResultsA total of 64 participants were enrolled. All of the participants successfully inserted both devices on their first attempt in trial 4. Fastrach was applied 1 s faster in trial 4 than the iLTS-D (median ‘time to ventilation’ Fastrach: 13.5 s., iLTS-D: 14.5 s., p = 0.04). All participants successfully intubated through both devices in trial 4. There was no difference in ‘time to tracheal ventilation’ by tracheal intubation between either device (median ‘time to tracheal ventilation’: Fastrach: 14.0 s., iLTS-D: 14.0 s., p = 0.16).ConclusionThe iLTS-D performed similarly to the ILMA in insertion and intubation times in a manikin setting.
In Germany the extent of organ donation is still inadequate and not sufficient to address patients on the waiting lists. Nevertheless, intensive care treatment of potential organ donors does not receive adequate attention. However, because of the increasing age and comorbidities of organ donors in recent years, a sufficient intensive care treatment is indispensable for the success of organ transplantations. Sufficient randomized clinical trials are lacking. This article reviews the current literature and describes approaches for improvement. Multicentre studies and education of medical staff of intensive care units, for example in intensive care simulation for organ protection, could potentially be a successful approach. The improvement and establishment of curricular training and education particularly in simulation workshops might be a promising approach to enhance the quantity and quality of organ donations.
BackgroundA variety of instruments are used to perform airway management by tracheal intubation. In this study, we compared the MacIntosh balde (MB) laryngoscope with the Bonfils intubation fibrescope as intubation techniques. The aim of this study was to identify the technique (MB or Bonfils) that would allow students in their last year of medical school to perform tracheal intubation faster and with a higher success probability. Data were collected from 150 participants using an airway simulator [‘Laerdal Airway Management Trainer’ (Laerdal Medical AS, Stavanger, Norway)]. The participants were randomly assigned to a sequence of techniques to use. Four consecutive intubation ‘trials’ were performed with each technique. These trials were evaluated for differences in the following categories: the ‘time to successful ventilation‘, ‘success probability’ within 90 s,’time to visualisation’ of the vocal cords (glottis), and ‘quality of visualisation’ according to the Cormack and Lehane score (C&L, grade 1–4). The primary endpoint was the ‘time to successful ventilation‘in the fourth and final trial.ResultsThere was no statistically significant difference in the ‘time to successful ventilation’ between the two techniques in trial 4 (‘time to successful ventilation’: median: MB: 16 s, Bonfils: 14 s, p = 0.244). However, the ‘success probability’ within 90 s was higher when using a Macintosh blade than when using a Bonfils (95 vs. 87 %). The glottis could be better visualised when using a Bonfils (C&L score of 1 (best view): MB: 41 %, Bonfils: 93 %), but visualisation was achieved more rapidly when using a Macintosh blade (median: ‘time to visualisation’: MB: 6 s, Bonfils: 8 s, p = 0.003).ConclusionsThe time to ventilation using the MacIntosh blade and Bonfils mainly did to differ, however success probabilities and time to visualisation primary favoured the MacIntosh blade as intubation technique, although the Bonfils seem to have a steeper learning curve. The Bonfils is still a promising intubation technique and might be easier to learn as the MB, at least in a manikin.Electronic supplementary materialThe online version of this article (doi:10.1186/s13104-016-1937-2) contains supplementary material, which is available to authorized users.
BackgroundIn infants, securing the airway is time-critical because of anatomical and physiological differences related to airway management in children less than 1 year old. The aim of this study was to compare the time to ventilation using two different hyperangulated video laryngoscope blades with the time to ventilation via conventional direct laryngoscopy in a normal airway [NA] and in a simulated difficult airway [DA].MethodsThis study was a comparative, bicentric, open-label, randomized controlled evaluation. An infant high-fidelity simulator (SimBaby™; Laerdal® Medical, Stavanger, Norway) was used, and two scenarios were proposed, as follows: NA and DA evoked with tongue edema and cervical collar. After theoretical and practical briefing, each participant compared in the two airway scenarios the novel King Vision™ Pediatric aBlade (KV) (Ambu® A/S, Bad Nauheim, Germany) video laryngoscope and the C-MAC™ D-blade Ped (DB) (Karl Storz® SE & Co. KG, Tuttlingen, Germany) video laryngoscope to conventional laryngoscopy using the Miller Blade (MiB) and the Macintosh Blade (MaB) in a random sequence.ResultsEighty physicians (65 AN and 15 PCCM staff) were included. In the NA scenario, the median [IQR] time to successful time to ventilation (TTV) was significantly shorter for the KV at 13 s [12–15 s] than for the MaB at 14.5 s [13–16 s], DB at 14.5 s [13–16] and MiB at 16 s [14–19] (p < 0.001). In DA, the KV also shortened TTV to 14 s [13–16], whereas TTV was 23 s with the MaB [20–26], 19 s with the DB [16–21], and 27 s with the MiB [22–31] (p < 0.001). There were no differences in first-pass intubation success rates (FPAs) between hyperangulated blades and direct laryngoscopes in NA. In DA, the hyperangulated blades enabled 92 (DB) to 100% (KV) FPAs compared with 65 (MiB) to 76% (MaB) for conventional laryngoscopy (p < 0.001).ConclusionVideo laryngoscopes with hyperangulated blades were associated with shorter TTV in normal and difficult infant airway situations. The higher FPAs of hyperangulated blades in DA may avoid desaturations and decrease adverse events in pediatric airway management.Electronic supplementary materialThe online version of this article (10.1186/s12871-018-0580-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.