Mutations in the gene encoding the gap junction protein connexin26 (Cx26) are responsible for the autosomal recessive isolated deafness, DFNB1, which accounts for half of the cases of prelingual profound hereditary deafness in Caucasian populations. To date, in vivo approaches to decipher the role of Cx26 in the inner ear have been hampered by the embryonic lethality of the Cx26 knockout mice. To overcome this difficulty, we performed targeted ablation of Cx26 specifically in one of the two cellular networks that it underlies in the inner ear, namely, the epithelial network. We show that homozygous mutant mice, Cx26(OtogCre), have hearing impairment, but no vestibular dysfunction. The inner ear developed normally. However, on postnatal day 14 (P14), i.e., soon after the onset of hearing, cell death appeared and eventually extended to the cochlear epithelial network and sensory hair cells. Cell death initially affected only the supporting cells of the genuine sensory cell (inner hair cell, IHC), thus suggesting that it could be triggered by the IHC response to sound stimulation. Altogether, our results demonstrate that the Cx26-containing epithelial gap junction network is essential for cochlear function and cell survival. We conclude that prevention of cell death in the sensory epithelium is essential for any attempt to restore the auditory function in DFNB1 patients.
Mammalian gonadotropin-releasing hormone (GnRH I: pGlu-His-TrpSer-Tyr-Gly-Leu-Arg-Pro-Gly-NH 2) stimulates pituitary gonadotropin secretion, which in turn stimulates the gonads. Whereas a hypothalamic form of GnRH of variable structure (designated type I) had been shown to regulate reproduction through a cognate type I receptor, it has recently become evident that most vertebrates have one or two other forms of GnRH. One of these, designated type II GnRH (GnRH II: pGlu-His-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH 2), is conserved from fish to man and is widely distributed in the brain, suggesting important neuromodulatory functions such as regulating K ؉ channels and stimulating sexual arousal. We now report the cloning of a type II GnRH receptor from marmoset cDNA. The receptor has only 41% identity with the type I receptor and, unlike the type I receptor, has a carboxyl-terminal tail. The receptor is highly selective for GnRH II. As with the type I receptor, it couples to G ␣q/11 and also activates extracellular signal-regulated kinase (ERK1͞2) but differs in activating p38 mitogen activated protein (MAP) kinase. The type II receptor is more widely distributed than the type I receptor and is expressed throughout the brain, including areas associated with sexual arousal, and in diverse non-neural and reproductive tissues, suggesting a variety of functions. Surprisingly, the type II receptor is expressed in the majority of gonadotropes. The presence of two GnRH receptors in gonadotropes, together with the differences in their signaling, suggests different roles in gonadotrope functioning.
Background-Connexin 43 (Cx43) is a major determinant of conduction in the ventricular working myocardium of mammals. We investigated the effect of decreased Cx43 expression on conduction velocity and arrhythmogenesis using adult mice with inducible deletion of Cx43. Methods and Results-Cx43Cre-ER(T)/ϩ mice, in which 1 coding region of the Cx43 gene was replaced by Cre-ER(T), were mated to Cx43 fl/fl mice, generating Cx43 Cre-ER(T)/fl mice. Application of 4-hydroxytamoxifen (4-OHT) induced Cre-ER(T)-mediated deletion of the floxed Cx43 allele. Epicardial ventricular mapping using a 13ϫ19 multiterminal electrode grid (300-m spacing) was performed on Langendorff-perfused hearts from Cx43 fl/fl plus carrier (nϭ10), Cx43 fl/fl plus 4-OHT (nϭ10), Cx43Cre-ER(T)/fl plus carrier (nϭ9), and Cx43Cre-ER(T)/fl plus 4-OHT (nϭ10). Cx43 protein amount in group 3 hearts was decreased by Ϸ50% compared with group 1. 4-OHT did not affect cardiac protein amounts in group 2 but decreased Cx43 expression up to 95% in group 4 compared with group 3. Epicardial activation of both left ventricle (LV) and right ventricle (RV) during sinus rhythm was similar in all groups. Conduction velocity (CV) changed only in group 4 animals. For RV (LV), longitudinal CV decreased from 38 (35) to 31.6 (33.6) and transverse CV from 24.4 (16.8) to 10.1 (11.3) cm/s. Dispersion of conduction in RV (LV) was increased by 91% (38%). Programmed stimulation resulted in ventricular arrhythmias in group 4 (7 of 10 mice) but never in groups 1 through 3. Conclusions-Heterozygous expression of Cx43 did not affect ventricular conduction velocity. Up to 95% decrease of Cx43 protein in 4-OHT-treated Cx43 Cre-ER(T)/fl mice reduced conduction velocity and increased dispersion of conduction and propensity for ventricular arrhythmias.
Horizontal cells are interneurons of the vertebrate retina that exhibit strong electrical and tracer coupling but the identity of the channel-forming connexins has remained elusive. Here we show that horizontal cells of the mouse retina express connexin57 (Cx57). We have generated Cx57-deficient mice by replacing the Cx57 coding region with a lacZ reporter gene, expressed under control of the endogenous Cx57 promoter. These mice were fertile and showed no obvious anatomical or behavioural abnormalities. Cx57 mRNA was expressed in the retina of wild-type littermates but was absent from the retina of Cx57-deficient mice. Previously reported results that the Cx57 gene was very weakly expressed in several other mouse tissues turned out to be unspecific. Cx57 mRNA is abundantly expressed in the retina and weakly in the thymus of adult mice but absent in all other adult tissues tested, including brain. Furthermore, Cx57 is expressed in embryonic kidney at E16.5 to E18.5 days post-conception, as indicated by the pattern of lacZ expression. Within the retina, lacZ signals were assigned exclusively to horizontal cells based on co-localization with cell-type-specific marker proteins. Microinjection of Neurobiotin into horizontal cells of isolated retinae revealed less than 1% of tracer coupling in Cx57-deficient retinae compared with wild-type controls. Cx57 is the first connexin identified in mammalian horizontal cells and the first connexin whose expression is apparently restricted to only one type of neuron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.