Rotational stability of the knee has been traditionally difficult to quantify, limiting the ability of the orthopedic community to determine the potential role of rotational laxity in the etiology of anterior cruciate ligament (ACL) injuries. The purposes of this multicenter cohort study were to evaluate the reliability of a robotic axial rotation measurement system, determine whether the uninjured knees of patients that had previous contralateral ACL reconstruction demonstrated different rotational biomechanical characteristics than a group of healthy volunteers, and determine whether knee rotational biomechanical characteristics differ between male and female non-injured limbs in groups of both healthy volunteers and patients with a previous contralateral ACL injury. Fourteen healthy volunteers and 79 patients with previous unilateral ACL injury participated in this study. Patients were tested using a computerized tibial axial rotation system. Only the normal (non-operated) knee data were used for analysis. In order to assess the reliability of the robotic measurement system, 10 healthy volunteers were tested daily over four consecutive days by four different examiners. Rotational laxity and compliance measures demonstrated excellent reliability (ICC = 0.97). Patients with a contralateral ACL injury demonstrated significantly increased tibial internal rotation (20.6° vs. 11.4°, P < 0.001) and reduced external rotation (16.7° vs. 26.6°, P < 0.001) compared to healthy volunteers. Females demonstrated significantly increased internal and external rotation, as well as significantly increased rotational compliance compared with males (P < 0.05). Computer-assisted measurement techniques may offer clinicians an accurate, reliable, non-invasive method to select the most appropriate preventative or surgical interventions for patients with increased knee rotational laxity.
The purpose of this research was to determine if bracing altered muscle firing amplitude, duration, or timing, creating improved dynamic stability. We hypothesized that a derotational knee brace improved the stability of an ACL deficient knee by augmenting limb proprioception, causing hamstring muscles to increase in activity and/or to contract earlier during a side-step cut. Ten subjects with documented unilateral isolated ACL deficient knees and five normal controls participated. A strap dominant brace (Lenox Hill, Lenox Hill Brace, Inc., Long Island City, NY) and a shell dominant brace (CTi, Innovation Sports, Irvine, CA) were selected for study. Using footswitches and dynamic EMG, we tested each subject during performance of a side-step cutting maneuver. Subjects completed 15 trials: 5 without bracing, 5 with the strap dominant brace, and 5 with the shell dominant brace. Normals cut 10 times each on their dominant limb. In swing phase, subjects had 38% more and 32% higher lateral hamstring EMG activity than normals; in stance phase, subjects had less quadriceps and gastrocnemius activity but more medial hamstring activity. When braced during stance phase, the ACL deficient legs demonstrated a further reduction of 18% in quadriceps total activity and 14% in peak activity compared to the unbraced situation. The hamstrings showed a concomitant decrease of 18% in total activity. No timing differences were noted between the braced and unbraced conditions during swing or stance phase.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.