Our goal was to ultimately predict the sensitivity of untested bacteria (including those of biodefense interest) to ultraviolet (UV) radiation. In this study, we present an overview and analysis of the relevant 254 nm data previously reported and available in the literature. The amount of variability in this data prevented us from determining an ''average'' response for any bacterium. Therefore, we developed particular selection criteria to include the data in our analysis and suggested future guidelines for reporting UV sensitivity results. We then compiled a table of the sensitivity to 254 nm UV for 38 bacteria and three bacterial spores. The UV sensitivity was quite similar (within 10%) among the spores of Bacillus anthracis (strains Vollum 1B and Sterne), Bacillus subtilis, and Bacillus megaterium. These data indicate that spores of B. subtilis and B. megaterium could be adequate simulants of B. anthracis spores in UVC experiments. Spores of B. anthracis, B. subtilis and B. megaterium were 5-10 times more resistant to UV than were their corresponding vegetative cells. The vegetative cells of B. anthracis showed similar UV sensitivity to those of Burkholderia pseudomallei, Shigella sonnei, and a wild-type strain of Escherichia coli. Yersinia enterocolitica and Vibrio cholerae appeared more sensitive to UV and Salmonella typhi slightly more resistant to UV than E. coli. The sensitivity (at 254 nm) of all vegetative bacteria ranged from 11 to 80 Jm 2 for a 1 Log 10 kill and from 25-200 Jm 2 for 4 Log 10 kill.
Several ultraviolet ( U V ) action spectra that typify the responses of higher plants to irradiation by wavelengths between 280 nm and 380 nm are shown. An attempt is made to generate common spectra that may be used, at least temporarily, to represent the effects of U V on such important biological parameters as photosynthesis. The goal is to provide an estimate of plant response to solar U V and to the potential increase in ground level UV postulated for a depleted stratospheric ozone layer. Solar plant damage effectiveness curves are generated under "normal" solar UV conditions, and under an assumed UV increase corresponding to a 16% depletion in total ozone. Additional effects due to ozone depletion are concentrated in the UV-B region, especially at wavelengths between about 197 nm and 315 nm. Common features of these effectiveness curves are noted, and limitations are pointed out. As expected, no common spectrum has been found that can substitute for any specific spectrum nor that is unique enough to provide more than a limited first approximation of a plant damage spectrum. Additional information must be generated to fulfill this need.
Our goal was to derive a quantitative factor that would allow us to predict the solar sensitivity of vegetative bacterial cells to natural solar radiation from the wealth of data collected for cells exposed to UVC (254 nm) radiation. We constructed a solar effectiveness spectrum for inactivation of vegetative bacterial cells by combining the available action spectra for vegetative cell killing in the solar range with the natural sunlight spectrum that reaches the ground. We then analyzed previous studies reporting the effects of solar radiation on vegetative bacterial cells and on bacterial spores. Although UVC-sensitive cells were also more sensitive to solar radiation, we found no absolute numerical correlation between the relative solar sensitivity of vegetative cells and their sensitivity to 254 nm radiation. The sensitivity of bacterial spores to solar exposure during both summer and winter correlated closely to their UVC sensitivity. The estimates presented here should make it possible to reasonably predict the time it would take for natural solar UV to kill bacterial spores or with a lesser degree of accuracy, vegetative bacterial cells after dispersion from an infected host or after an accidental or intentional release.
Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates of effect. Preliminary estimates suggest that ozone layer depletion may seriously impact such important biological end-points as skin cancer, cataracts, the immune system, crop yields, and oceanic phytoplankton. So action spectra continue to play a central role in important photobiological research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.