Automatically scoring plant traits using a combination of imaging and deep learning holds promise to accelerate data collection, scientific inquiry, and breeding progress. However, applications of this approach are currently held back by the availability of large and suitably annotated training datasets. Early training datasets targeted arabidopsis or tobacco. The morphology of these plants quite different from that of grass species like maize. Two sets of maize training data, one real-world and one synthetic were generated and annotated for late vegetative stage maize plants using leaf count as a model trait. Convolutional neural networks (CNNs) trained on entirely synthetic data provided predictive power for scoring leaf number in real-world images. This power was less than CNNs trained with equal numbers of real-world images, however, in some cases CNNs trained with larger numbers of synthetic images outperformed CNNs trained with smaller numbers of real-world images. When real-world training images were scarce, augmenting real-world training data with synthetic data provided improved prediction accuracy. Quantifying leaf number over time can provide insight into plant growth rates and stress responses, and can help to parameterize crop growth models. The approaches and annotated training data described here may help future efforts to develop accurate leaf counting algorithms for maize.4. Partially or completely overlapping leaves from the perspective of the observer ( Figure 2D).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.