Context Contrast-induced nephropathy remains a common complication of radiographic procedures. Pretreatment with sodium bicarbonate is more protective than sodium chloride in animal models of acute ischemic renal failure. Acute renal failure from both ischemia and contrast are postulated to occur from free-radical injury. However, no studies in humans or animals have evaluated the efficacy of sodium bicarbonate for prophylaxis against contrast-induced nephropathy. Objective To examine the efficacy of sodium bicarbonate compared with sodium chloride for preventive hydration before and after radiographic contrast. Design, Setting, and Patients A prospective, single-center, randomized trial conducted from September 16, 2002, to June 17, 2003, of 119 patients with stable serum creatinine levels of at least 1.1 mg/dL (Ն97.2 µmol/L) who were randomized to receive a 154-mEq/L infusion of either sodium chloride (n=59) or sodium bicarbonate (n=60) before and after iopamidol administration (370 mg iodine/mL). Serum creatinine levels were measured at baseline and 1 and 2 days after contrast.
Transforming growth factor-beta1 (TGF-beta1) is abundantly expressed in pulmonary hypertension, but its effect on the pulmonary circulation remains unsettled. We studied the consequences of TGF-beta1 stimulation on freshly isolated human pulmonary artery smooth muscle cells (HPASMC). TGF-beta1 initially promoted differentiation, with upregulated expression of smooth muscle contractile proteins. TGF-beta1 also induced expression of Nox4, the only NAD(P)H oxidase membrane homolog found in HPASMC, through a signaling pathway involving Smad 2/3 but not mitogen-activated protein (MAP) kinases. TGF-beta1 likewise increased production of reactive oxygen species (ROS), an effect significantly reduced by the NAD(P)H oxidase flavoprotein inhibitor diphenylene iodonium (DPI) and by Nox4 siRNAs. In the absence of TGF-beta1, Nox4 was present in freshly cultured cells but progressively lost with each passage in culture, paralleling a decrease in ROS production by HPASMC over time. At a later time point (72 h), TGF-beta1 promoted HPASMC proliferation in a manner partially inhibited by Nox4 small interfering RNA and dominant negative Smad 2/3, indicating that TGF-beta1 stimulates HPASMC growth in part by a redox-dependent mechanism mediated through induction of Nox4. HPASMC activation of the MAP kinases ERK1/2 was reduced by the NAD(P)H oxidase inhibitors DPI and 4-(2-aminoethyl)benzenesulfonyl fluoride, suggesting that TGF-beta1 may facilitate proliferation by upregulating Nox4 and ROS production, with transient oxidative inactivation of phosphatases and augmentation of growth signaling cascades. These findings suggest that Nox4 is the relevant Nox homolog in HPASMC. This is the first observation that TGF-beta1 regulates Nox4, with important implications for mechanisms of pulmonary vascular remodeling.
Reactive oxygen species (ROS) appear to play an important role in regulating growth and survival of prostate cancer. However, the sources for ROS production in prostate cancer cells have not been determined. We report that ROS are generated by intact American Type Culture Collection DU 145 cells and by their membranes through a mechanism blocked by NAD(P)H oxidase inhibitors. ROS are critical for growth in these cells, because NAD(P)H oxidase inhibitors and antioxidants blocked proliferation. Components of the human phagocyte NAD(P)H oxidase, p22phox and gp91phox, as well as the Ca2+ concentration-responsive gp91phox homolog NOX5 were demonstrated in DU 145 cells by RT-PCR and sequencing. Although the protein product for p22phox was not detectable, both gp91phox and NOX5 were identified throughout the cell by immunostaining and confocal microscopy and NOX5 immunostaining was enhanced in a perinuclear location, corresponding to enhanced ROS production adjacent to the nuclear membrane imaged by 2',7'-dichlorofluorescin diacetate oxidation. The calcium ionophore ionomycin dramatically stimulated ferricytochrome c reduction in cell media, further supporting the importance of NOX5 for ROS production. Antisense oligonucleotides for NOX5 inhibited ROS production and cell proliferation in DU 145 cells. In contrast, antisense oligonucleotides to p22phox or gp91phox did not impair cell growth. Inhibition of ROS generation with antioxidants or NAD(P)H oxidase inhibitors increased apoptosis in cells. These results indicate that ROS generated by the newly described NOX5 oxidase are essential for prostate cancer growth, possibly by providing trophic intracellular oxidant tone that retards programmed cell death.
Persistent hypoxia can cause pulmonary arterial hypertension that may be associated with significant remodeling of the pulmonary arteries, including smooth muscle cell proliferation and hypertrophy. We previously demonstrated that the NADPH oxidase homolog NOX4 mediates human pulmonary artery smooth muscle cell (HPASMC) proliferation by transforming growth factor-beta1 (TGF-beta1). We now show that hypoxia increases HPASMC proliferation in vitro, accompanied by increased reactive oxygen species generation and NOX4 gene expression, and is inhibited by antioxidants, the flavoenzyme inhibitor diphenyleneiodonium (DPI), and NOX4 gene silencing. HPASMC proliferation and NOX4 expression are also observed when media from hypoxic HPASMC are added to HPASMC grown in normoxic conditions, suggesting autocrine stimulation. TGF-beta1 and insulin-like growth factor binding protein-3 (IGFBP-3) are both increased in the media of hypoxic HPASMC, and increased IGFBP-3 gene expression is noted in hypoxic HPASMC. Treatment with anti-TGF-beta1 antibody attenuates NOX4 and IGFBP-3 gene expression, accumulation of IGFBP-3 protein in media, and proliferation. Inhibition of IGFBP-3 expression with small interfering RNA (siRNA) decreases NOX4 gene expression and hypoxic proliferation. Conversely, NOX4 silencing does not decrease hypoxic IGFBP-3 gene expression or secreted protein. Smad inhibition does not but the phosphatidylinositol 3-kinase (PI3K) signaling pathway inhibitor LY-294002 does inhibit NOX4 and IGFBP-3 gene expression, IGFBP-3 secretion, and cellular proliferation resulting from hypoxia. Immunoblots from hypoxic HPASMC reveal increased TGF-beta1-mediated phosphorylation of the serine/threonine kinase (Akt), consistent with hypoxia-induced activation of PI3K/Akt signaling pathways to promote proliferation. We conclude that hypoxic HPASMC produce TGF-beta1 that acts in an autocrine fashion to induce IGFBP-3 through PI3K/Akt. IGFBP-3 increases NOX4 gene expression, resulting in HPASMC proliferation. These observations add to our understanding hypoxic pulmonary vascular remodeling.
Trauma intensive care unit (TICU) patients requiring mechanical respiratory support frequently develop ventilator-associated pneumonia (VAP). Oral and oropharyngeal bacteria are believed to be responsible for many cases of VAP, but definitive evidence of this relationship is lacking. Earlier studies used conventional culture-based methods for identification of bacterial pathogens, but these methods are insufficient, as some bacteria may be uncultivable or difficult to grow. The purpose of this study was to use a culture-independent molecular approach to analyze and compare the bacterial species colonizing the oral cavity and the lungs of TICU patients who developed VAP. Bacterial samples were acquired from the dorsal tongue and bronchoalveolar lavage fluid of 16 patients. Bacterial DNA was extracted, and the 16S rRNA genes were PCR amplified, cloned into Escherichia coli, and sequenced. The sequencing data revealed the following: (i) a wide diversity of bacterial species in both the oral and pulmonary sites, some of them novel; (ii) known and putative respiratory pathogens colonizing both the oral cavity and lungs of 14 patients; and (iii) a number of bacterial pathogens (e.g., Dialister pneumosintes, Haemophilus segnis, Gemella morbillorum, and Pseudomonas fluorescens) in lung samples that had not been reported previously at this site when culture-based methods were used. Our data indicate that the dorsal surface of the tongue serves as a potential reservoir for bacterial species involved in VAP. Furthermore, it is clear that the diversity of bacterial pathogens for VAP is far more complex than the current literature suggests.Ventilator-associated pneumonia (VAP) frequently occurs in patients requiring mechanical respiratory support, with incidence from 8% to 28% and mortality rates from 24% to 76%, depending on the population studied and the techniques used for the diagnosis of pneumonia (3). VAP is often associated with prolonged hospitalization of trauma patients, which can result in additional hospital charges of about $40,000 per patient (1).The etiology of VAP is variable, depending on the time of onset, duration of hospitalization, population studied, and hospital setting (3). For example, Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae usually predominate in early-onset VAP. Aerobic gram-negative bacteria, including members of the family Enterobacteriaceae, have been isolated in both early-and late-onset pneumonia. Pseudomonas aeruginosa and Acinetobacter and Enterobacter species are often isolated from late-onset pneumonia. Trauma intensive care unit (TICU) patients are at high risk of infection with S. aureus, among a variety of other microorganisms. In the postsurgical population, H. influenzae and S. pneumoniae dominate in trauma patients but not in patients with other diagnoses (3, 5). In one study, oral anaerobic bacteria such as Prevotella, Veillonella, and Fusobacterium spp. were isolated from VAP patients (4).Several different routes of infection by VAP pathogens hav...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.