There is an increased incidence of heart failure in individuals with diabetes mellitus (DM). The coexistence of kidney disease in DM exacerbates the cardiovascular prognosis. Researchers have attempted to combine the critical features of heart failure, using transverse aortic constriction, with DM in mice, but variable findings have been reported. Furthermore, kidney outcomes have not been assessed in this setting; thus its utility as a model of heart failure in DM and kidney disease is unknown. We generated a mouse model of obesity, hyperglycemia, and mild kidney pathology by feeding male C57BL/6J mice a high-fat diet (HFD). Cardiac pressure overload was surgically induced using transverse aortic constriction (TAC). Normal diet (ND) and sham controls were included. Heart failure risk factors were evident at 8-wk post-TAC, including increased left ventricular mass (+49% in ND and +35% in HFD), cardiomyocyte hypertrophy (+40% in ND and +28% in HFD), and interstitial and perivascular fibrosis (Masson's trichrome and picrosirius red positivity). High-fat feeding did not exacerbate the TAC-induced cardiac outcomes. At 11 wk post-TAC in a separate mouse cohort, echocardiography revealed reduced left ventricular size and increased left ventricular wall thickness, the latter being evident in ND mice only. Systolic function was preserved in the TAC mice and was similar between ND and HFD. Thus combined high-fat feeding and TAC in mice did not model the increased incidence of heart failure in DM patients. This model, however, may mimic the better cardiovascular prognosis seen in overweight and obese heart failure patients.
Selective SGLT2 inhibition reduces the risk of worsening heart failure and cardiovascular death in patients with existing heart failure, irrespective of diabetic status. We aimed to investigate the effects of dual SGLT1/2 inhibition, using sotagliflozin, on cardiac outcomes in normal diet (ND) and high fat diet (HFD) mice with cardiac pressure overload. Five-week-old male C57BL/6J mice were randomized to receive a HFD (60% of calories from fat) or remain on ND for 12 weeks. One week later, transverse aortic constriction (TAC) was employed to induce cardiac pressure-overload (50% increase in right:left carotid pressure versus sham surgery), resulting in left ventricular hypertrophic remodeling and cardiac fibrosis, albeit preserved ejection fraction. At 4 weeks post-TAC, mice were treated for 7 weeks by oral gavage once daily with sotagliflozin (10 mg/kg body weight) or vehicle (0.1% tween 80). In ND mice, treatment with sotagliflozin attenuated cardiac hypertrophy and histological markers of cardiac fibrosis induced by TAC. These benefits were associated with profound diuresis and glucosuria, without shifts toward whole-body fatty acid utilization, increased circulating ketones, nor increased cardiac ketolysis. In HFD mice, sotagliflozin reduced the mildly elevated glucose and insulin levels but did not attenuate cardiac injury induced by TAC. HFD mice had vacuolation of proximal tubular cells, associated with less profound sotagliflozin-induced diuresis and glucosuria, which suggests dampened drug action. We demonstrate the utility of dual SGLT1/2 inhibition in treating cardiac injury induced by pressure overload in normoglycemic mice. Its efficacy in high fat-fed mice with mild hyperglycemia and compromised renal morphology requires further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.