Phased microphone arrays have become a well-established tool for performing aeroacoustic measurements in wind tunnels (both open-jet and closed-section), flying aircraft, and engine test beds. This paper provides a review of the most wellknown and state-of-the-art acoustic imaging methods and recommendations on when to use them. Several exemplary results showing the performance of most methods in aeroacoustic applications are included. This manuscript provides a general introduction to aeroacoustic measurements for non-experienced microphone-array users as well as a broad overview for general aeroacoustic experts.
The possibility of using the time-reversal technique to localize acoustic sources in a wind-tunnel flow is investigated. While the technique is widespread, it has scarcely been used in aeroacoustics up to now. The proposed method consists of two steps: in a first experimental step, the acoustic pressure fluctuations are recorded over a linear array of microphones; in a second numerical step, the experimental data are time-reversed and used as input data for a numerical code solving the linearized Euler equations. The simulation achieves the back-propagation of the waves from the array to the source and takes into account the effect of the mean flow on sound propagation. The ability of the method to localize a sound source in a typical wind-tunnel flow is first demonstrated using simulated data. A generic experiment is then set up in an anechoic wind tunnel to validate the proposed method with a flow at Mach number 0.11. Monopolar sources are first considered that are either monochromatic or have a narrow or wide-band frequency content. The source position estimation is well-achieved with an error inferior to the wavelength. An application to a dipolar sound source shows that this type of source is also very satisfactorily characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.