We searched for evidence for a contribution of stem cells in growth of the proximal S3 segments of healthy rats. According to the stem cell model, stem cells are undifferentiated and slow cycling; the bulk of cycling cells are transit amplifying, rapidly cycling cells. We show the following. 1) By continuous application of a thymidine analog (ThA) for 7 days, S3 proximal epithelial cells in healthy kidneys display a high-cycling rate. 2) Slow-cycling cells, identified by lack of ThA uptake during 14 days of continuous ThA application up to death and by expression of the cell cycle protein Ki67 at death, have the same degree of differentiation as quiescent cells. 3) To detect rapidly cycling cells, rats were killed at various time points after injection of a ThA. Double immunofluorescence for ThA and a cell cycle marker was performed, with colocalization indicating successive divisions. During one week after division, daughter cells display a very low proliferation rate, indicating the absence of rapidly cycling cells. 4) Labeling with cyclin D1 showed that this low proliferation rate is due to cycle arrest. 5) More than 50% of the S3 cells entered the cell cycle 36 h after a potent proliferative stimulus (lead acetate injection). We conclude that generation of new cells in the proximal tubule relies on division of differentiated, normally slow-cycling cells. These may rapidly enter the cycle under an adequate stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.