We study empirical metrics for software source code, which can predict the performance of verification tools on specific types of software. Our metrics comprise variable usage patterns, loop patterns, as well as indicators of control-flow complexity and are extracted by simple data-flow analyses. We demonstrate that our metrics are powerful enough to devise a machine-learning based portfolio solver for software verification. We show that this portfolio solver would be the (hypothetical) overall winner of the international competition on software verification (SV-COMP) in three consecutive years (2014)(2015)(2016). This gives strong empirical evidence for the predictive power of our metrics and demonstrates the viability of portfolio solvers for software verification. Moreover, we demonstrate the flexibility of our algorithm for portfolio construction in novel settings: originally conceived for SV-COMP'14, the construction works just as well for SV-COMP'15 (considerably more verification tasks) and for SV-COMP'16 (considerably more candidate verification tools).
We present a thread-modular proof method for complexity and resource bound analysis of concurrent, shared-memory programs. To this end, we lift Jones’ rely-guarantee reasoning to assumptions and commitments capable of expressing bounds. The compositionality (thread-modularity) of this framework allows us to reason about parameterized programs, i.e., programs that execute arbitrarily many concurrent threads. We automate reasoning in our logic by reducing bound analysis of concurrent programs to the sequential case. As an application, we automatically infer time complexity for a family of fine-grained concurrent algorithms, lock-free data structures, to our knowledge for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.