BackgroundEvidence concerning the use of vibrotactile feedback for acquiring and learning new motor skills is limited. Although various concepts and applications for tactile feedback have been proposed, little is known about the suitability of this feedback mechanism in sports training.AimThe goal of this systematic review was to gather knowledge on the efficacy of the use of vibrotactile feedback in improving sports performance skills.DesignSystematic review.MethodsComprehensively searched databases were: PubMed, Cochrane and Web of Science. Studies investigating the effects of using vibrotactile feedback in sports training in healthy subjects were included in this review.ResultsNo consensus was found regarding the positive effectiveness on performance using vibrotactile feedback in a sports context. No evidence was found that the addition of tactile feedback is effective for acquiring new motor skills. None of the studies show a significant learning effect.
The force assessment method and the model can be used to pinpoint needle geometry for intradermal injection devices, tuning comfort for subjects and usability for operators.
The aim of this study was to investigate the perception of vibrotactile signals during physical exercise by comparing differences in recognition between stationary and cycling positions. The impact of physical exercise on the ability to perceive vibrotactile cues is unknown, whereas the recognition in stationary position has been shown previously. Vibrating elements were positioned at 3 locations on the thighs and spine of 9 athletes to apply various vibrotactile cues. Subjects performed at 0, 50, 70 and 90% of their maximal cycling power output and denoted the interpretation of the vibration signals on a touchscreen. The results show a similarity in correct recognition between stationary position and physical exercise for the thighs and spine (p>0.1) and demonstrate a decrease in response time for 70 and 90% levels of physical exercise compared to 0 and 50% (p<0.001). Furthermore, vibrotactile signals at the spine are noticed more accurately and more rapidly compared to the thighs (p<0.01). These results suggest that vibrotactile feedback also has potential in applications during physical exercise. The potential use of vibrotactile feedback can be in cycling for, among other, correcting the aerodynamic position. Applications in other sports and health-related domains are feasible as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.