Protein aggregation in biotherapeutics can reduce their activity and effectiveness. It may also promote immune reactions responsible for severe adverse effects. The impact of plastic materials on protein destabilization is not totally understood. Here, we propose to deconvolve the effects of material surface, air/liquid interface, and agitation to decipher their respective role in protein destabilization and aggregation. We analyzed the effect of polypropylene, TEFLON, glass and LOBIND surfaces on the stability of purified proteins (bovine serum albumin, hemoglobin and α-synuclein) and on a cell extract composed of 6000 soluble proteins during agitation (P = 0.1–1.2 W/kg). Proteomic analysis revealed that chaperonins, intrinsically disordered proteins and ribosomes were more sensitive to the combined effects of material surfaces and agitation while small metabolic oligomers could be protected in the same conditions. Protein loss observations coupled to Raman microscopy, dynamic light scattering and proteomic allowed us to propose a mechanistic model of protein destabilization by plastics. Our results suggest that protein loss is not primarily due to the nucleation of small aggregates in solution, but to the destabilization of proteins exposed to material surfaces and their subsequent aggregation at the sheared air/liquid interface, an effect that cannot be prevented by using LOBIND tubes. A guidance can be established on how to minimize these adverse effects. Remove one of the components of this combined stress - material, air (even partially), or agitation - and proteins will be preserved.
Phase-change alloys have seen widespread use, from rewritable optical disks to current interest in their use in emerging neuromorphic computing architectures. In spite of this enormous commercial interest, the physics of the carriers in these materials is still not fully understood. Here, we describe the time and space dependence of the coupling between photoexcited carriers and the lattice in both the amorphous and crystalline states of one phase-change material, GeTe. We study this material using a time-resolved optical technique called the picosecond acoustic method to investigate the in situ thermally assisted amorphous-tocrystalline phase transformation in GeTe. Our work reveals a clear evolution of electron-phonon coupling during the phase transformation, as the spectra of photoexcited acoustic phonons in the amorphous (a-GeTe) and crystalline (α-GeTe) phases are different. In particular, and surprisingly, our analysis of the photoinduced acoustic pulse duration in crystalline GeTe suggests that part of the energy deposited during the photoexcitation process takes place over a distance that clearly exceeds that defined by the skin depth of the pump light. Alternatively, the photoexcitation process remains localized within that skin depth in the amorphous state. We then demonstrate that this is due to supersonic diffusion of photoexcited electronhole plasma in the crystalline state. Consequently, these findings prove the existence of the nonthermal transport of energy, which is much faster than lattice heat diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.