Spiking neural networks (SNNs) are inspired by information processing in biology, where sparse and asynchronous binary signals are communicated and processed in a massively parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such as low power consumption, fast inference, and event-driven information processing. This makes them interesting candidates for the efficient implementation of deep neural networks, the method of choice for many machine learning tasks. In this review, we address the opportunities that deep spiking networks offer and investigate in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware. A wide range of training methods for SNNs is presented, ranging from the conversion of conventional deep networks into SNNs, constrained training before conversion, spiking variants of backpropagation, and biologically motivated variants of STDP. The goal of our review is to define a categorization of SNN training methods, and summarize their advantages and drawbacks. We further discuss relationships between SNNs and binary networks, which are becoming popular for efficient digital hardware implementation. Neuromorphic hardware platforms have great potential to enable deep spiking networks in real-world applications. We compare the suitability of various neuromorphic systems that have been developed over the past years, and investigate potential use cases. Neuromorphic approaches and conventional machine learning should not be considered simply two solutions to the same classes of problems, instead it is possible to identify and exploit their task-specific advantages. Deep SNNs offer great opportunities to work with new types of event-based sensors, exploit temporal codes and local on-chip learning, and we have so far just scratched the surface of realizing these advantages in practical applications.
In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.
Computational neuroscience has uncovered a number of computational principles used by nervous systems. At the same time, neuromorphic hardware has matured to a state where fast silicon implementations of complex neural networks have become feasible. En route to future technical applications of neuromorphic computing the current challenge lies in the identification and implementation of functional brain algorithms. Taking inspiration from the olfactory system of insects, we constructed a spiking neural network for the classification of multivariate data, a common problem in signal and data analysis. In this model, real-valued multivariate data are converted into spike trains using "virtual receptors" (VRs). Their output is processed by lateral inhibition and drives a winner-take-all circuit that supports supervised learning. VRs are conveniently implemented in software, whereas the lateral inhibition and classification stages run on accelerated neuromorphic hardware. When trained and tested on real-world datasets, we find that the classification performance is on par with a naïve Bayes classifier. An analysis of the network dynamics shows that stable decisions in output neuron populations are reached within less than 100 ms of biological time, matching the time-to-decision reported for the insect nervous system. Through leveraging a population code, the network tolerates the variability of neuronal transfer functions and trial-totrial variation that is inevitably present on the hardware system. Our work provides a proof of principle for the successful implementation of a functional spiking neural network on a configurable neuromorphic hardware system that can readily be applied to realworld computing problems.bioinspired computing | spiking networks | machine learning | multivariate classification T he remarkable sensory and behavioral capabilities of all higher organisms are provided by the network of neurons in their nervous systems. The computing principles of the brain have inspired many powerful algorithms for data processing, most importantly the perceptron and, building on top of that, multilayer artificial neural networks, which are being applied with great success to various data analysis problems (1). Although these networks operate with continuous values, computation in biological neuronal networks relies on the exchange of action potentials, or "spikes."Simulating networks of spiking neurons with software tools is computationally intensive, imposing limits to the duration of simulations and maximum network size. To overcome this limitation, several groups around the world have started to develop hardware realizations of spiking neuron models and neuronal networks (2-10) for studying the behavior of biological networks (11). The approach of the Spikey hardware system used in the present study is to enable high-throughput network simulations by speeding up computation by a factor of 10 4 compared with biological real time (12, 13). It has been developed as a reconfigurable multineuron computing substrat...
In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.