High‐resolution observations of the density structure of atomic sodium in the Earth's mesosphere and lower thermosphere, using a large‐aperture lidar system, reveal features of this dynamic region in greater detail. The sodium is highly structured, showing multiple layers that vary in density and altitude on timescales ranging from minutes to hours. Large‐scale instabilities and Kelvin‐Helmholtz billows are observed along with an overall downward propagation of the layers. Coherent short‐period gravity wave oscillations are sometimes seen extending over the entire sodium region. Individual meteor ablation trails produce transient density spikes that last at most a few seconds. The mean sodium altitude is found to have a temporal power spectrum proportional to the –1.9 power of the frequency, close to that expected for Kolmogorov turbulence.
Context. The performance of laser guide star adaptive optics (AO) systems for large optical and infrared telescopes is affected by variability of the sodium layer, located at altitudes between 80 and 120 km in the upper mesosphere and lower thermosphere. The abundance and density structure of the atomic sodium found in this region is subject to local and global weather effects, planetary and gravity waves and magnetic storms, and is variable on time scales down to tens of milliseconds, a range relevant to AO. Aims. It is therefore important to characterize the structure and dynamical evolution of the sodium region on small, as well as large spatial and temporal scales. Parameters of particular importance for AO are the mean sodium altitude, sodium layer width and the temporal power spectrum of the centroid altitude. Methods. We have conducted a three-year campaign employing a high-resolution lidar system installed on the 6-m Large Zenith Telescope (LZT) located near Vancouver, Canada. During this period, 112 nights of useful data were obtained. Results. The vertical density profile of atomic sodium shows remarkable structure and variability. Smooth Gaussian-shaped profiles rarely occur. Multiple internal layers are frequently found. These layers often have sharp lower edges, with scale heights of just a few hundred meters, and tend to drift downwards at a typical rate of one kilometer every two to three hours. Individual layers can persist for many hours, but their density and internal structure can be highly variable. Sporadic layers are seen reaching peak densities several times the average, often in just a few minutes. Coherent vertical oscillations are often found, typically extending over tens of kilometers in altitude. Regions of turbulence are evident and Kelvin-Helmholtz instability are sometimes seen. The mean value of the centroid altitude is found to be 90.8 ± 0.1 km. The sodium layer width was determined by computing the altitude range that contains a specified fraction of the returned sodium light. We find a mean value of 13.1 ± 0.3 km for the range containing 95% of the photons, with a maximum width of 21 km. The temporal power spectral density of fluctuations of the centroid altitude is well described by a power law having an index that ranges from −1.6 to −2.3 with a mean value of −1.87 ± 0.02. This is significantly steeper than the value of −5/3 that would be expected if the dynamics were dominated by Kolmogorov turbulence, indicating that other factors such as gravity waves play an important role. The amplitude of the power spectrum has a mean value of 34 +6 −5 m 2 Hz −1 at a frequency of 1 Hz, but ranges over two orders of magnitude. The annual means of the index and amplitude show a variation that is well beyond the calculated error range. Long-term global weather patterns may be responsible for this effect.
Observations of sodium density variability in the upper mesosphere/lower thermosphere, obtained using a high-resolution lidar system, show rapid fluctuations in the sodium centroid altitude. The temporal power spectrum extends above 1 Hz and is well-fit by a power law having a slope that is -1.95±0.12. These fluctuations produce focus errors in adaptive optics systems employing continuous-wave sodium laser guide stars, which can be significant for large-aperture telescopes. For a 30 m aperture diameter, the associated rms wavefront error is approximately 4 nm per meter of altitude change and increases as the square of the aperture diameter. The vertical velocity of the sodium centroid altitude is found to be ~23 ms(-1) on a 1 s time scale. If these high-frequency fluctuations arise primarily from advection of horizontal structure by the mesospheric wind, our data imply that variations in the sodium centroid altitude on the order of tens of meters occur over the horizontal scales spanned by proposed laser guide star asterisms. This leads to substantial differential focus errors (~107 nm over a 1 arc min separation with a 30 m aperture diameter) that may impact the performance of wide-field adaptive optics systems. Short-lasting and narrow sodium density enhancements, more than 1 order of magnitude above the local sodium density, occur due to advection of meteor trails. These have the ability to change the sodium centroid altitude by as much as 1 km in less than 1 s, which could result in temporary disruption of adaptive optics systems.
Atmospheric turbulence compensation via adaptive optics (AO) will be essential for achieving most objectives of the TMT science case. The performance requirements for the initial implementation of the observatory's facility AO system include diffraction-limited performance in the near IR with 50 per cent sky coverage at the galactic pole. This capability will be achieved via an order 60x60 multi-conjugate AO system (NFIRAOS) with two deformable mirrors optically conjugate to ranges of 0 and 12 km, six high-order wavefront sensors observing laser guide stars in the mesospheric sodium layer, and up to three low-order, IR, natural guide star wavefront sensors located within each client instrument. The associated laser guide star facility (LGSF) will consist of 3 50W class, solid state, sum frequency lasers, conventional beam transport optics, and a launch telescope located behind the TMT secondary mirror. In this paper, we report on the progress made in designing, modeling, and validating these systems and their components over the last two years. This includes work on the overall layout and detailed opto-mechanical designs of NFIRAOS and the LGSF; reliable wavefront sensing methods for use with elongated and time-varying sodium laser guide stars; developing and validating a robust tip/tilt control architecture and its components; computationally efficient algorithms for very high order wavefront control; detailed AO system modeling and performance optimization incorporating all of these effects; and a range of supporting lab/field tests and component prototyping activities at TMT partners. Further details may be found in the additional papers on each of the above topics.
Ellesmere Island, at the most northerly tip of Canada, possesses the highest mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many summits over 1000 m, high enough to place them above a stable low-elevation thermal inversion that persists through winter darkness. Our group has studied four mountains along the northwestern coast which have the additional benefit of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small robotic site testing stations at three sites, the highest of which is over 1600 m and within 8 degrees of the pole. Basic weather and sky clarity data for over three years beginning in 2006 are presented here, and compared with available nearby sea-level data and one manned mid-elevation site. Our results point to coastal mountain sites experiencing good weather: low median wind speed, high clear-sky fraction and the expectation of excellent seeing. Some practical aspects of access to these remote locations and operation and maintenance of equipment there are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.