A new route to ladder-type pentaphenylenes has been developed in which both good hole-accepting p-type and electron-accepting n-type materials can be prepared from a common intermediate. This key intermediate is a pentaphenylene diester 5 obtained in high yield by Suzuki coupling of 2 equiv of fluorene boronates with 2,5-dibromoterephthalate. Addition of aryllithium followed by ring closure with boron trifluoride produced a blue-emitting ladder-type pentaphenylene. Bromination followed by reductive polymerization with nickel(0) gave new high molecular mass polymers, which show efficient blue emission with a very small Stokes shift. These polymers bridge the gap in emission between polyfluorenes and fully ladder-type polyphenylenes. An alternative ring closure of the dibromopentaphenylene diester 14 with acid made a diketone that is a good electron-accepting material, as it displays a reversible two-electron reduction. The reduction onset potential of -0.875 V against Ag/Ag(+) corresponds to a lowest unoccupied molecular orbital (LUMO) energy level of 3.53 eV, comparable to the work function of magnesium, suggesting that this unit could be used to greatly increase the injection of electrons into polymers containing it in a light-emitting diode (LED) or solar cell. A red-emitting material was prepared by Suzuki coupling of the dibromopentaphenylene 10b with a perylene dye, thus offering the prospect of tuning the emission from pentaphenylene materials over the whole visible range by attachment of suitable dyes. Unoptimized single-layer organic LEDs that used 11b showed stable pure-blue emission with brightnesses of over 200 cd/m(2) at 7 V, with moderate efficiencies.
The fabrication of organic light‐emitting devices (OLEDs) from semiconducting polymer nanospheres (SPNs) deposited from aqueous dispersions is described. It is found that the active device layer consists of a homogeneous single layer of light‐emitting SPNs. The OLEDs exhibit an electroluminescence onset at the SPN energy gap, which can be attributed to field‐enhanced charge‐carrier injection at the nanostructured Al cathode.
Electrically induced phosphorescence from a poly(para-phenylene) ladder-type polymer is observed for the first time and characterized using time resolved spectroscopy. Short-lived phosphorescence is also observed in gated fluorescence spectra and is found to be quenched reversibly by oxygen. Thermally activated triplet diffusion to covalently bound palladium sites, which are formed at a concentration of about 80 ppm in a side reaction during polymer synthesis, is believed to be the cause of this novel effect, which suggests a new approach to the design of efficient electroluminescent materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.