Glutamate is an essential neurotransmitter for signal processing in the vertical pathway of the mammalian retina, where it is involved in the distribution of visual information into several parallel channels. The excitatory effects of glutamate are mediated by AMPA-, kainate-, and NMDA-type ionotropic glutamate receptors (iGluRs). The expression patterns of these receptors in the vertebrate retina have been investigated so far with mainly immunocytochemical, in-situ hybridization, and electrophysiological/pharmacological techniques. Here, we have used scRNA sequencing data from chicken, mouse, macaque, and human retina to describe and compare the profile of iGluR expression in major retinal cell types across species. Our results suggest that major retinal cell types each express a unique set of iGluRs with substantial differences between non-mammalian and mammalian retinae. Expression of iGluRs has been investigated in more detail for amacrine and bipolar cell types of the human retina, each showing minor variations of a common pattern. The differential expression of iGluRs is likely to convey unique signal processing properties to individual elements of the retinal circuitry.
Brain research up to date has revealed that structure and function are highly related. Thus, for example, studies have repeatedly shown that the brains of patients suffering from schizophrenia or other diseases have a different connectome compared to healthy people. Apart from stochastic processes, however, an inherent logic describing how neurons connect to each other has not yet been identified. We revisited this structural dilemma by comparing and analyzing artificial and biological-based neural networks. Namely, we used feed-forward and recurrent artificial neural networks as well as networks based on the structure of the micro-connectome of C. elegans and of the human macro-connectome. We trained these diverse networks, which markedly differ in their architecture, initialization and pruning technique, and we found remarkable parallels between biological-based and artificial neural networks, as we were additionally able to show that the dilemma is also present in artificial neural networks. Our findings show that structure contains all the information, but that this structure is not exclusive. Indeed, the same structure was able to solve completely different problems with only minimal adjustments. We particularly put interest on the influence of weights and the neuron offset value, as they show a different adaption behaviour. Our findings open up new questions in the fields of artificial and biological information processing research.
Spontaneous synaptic activity is a hallmark of biological neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precluded an in-depth analysis or it has forced human observers to resort to manual or semi-automated approaches based on subjective amplitude and area threshold settings. Both procedures are time-consuming, error-prone and likely affected by human bias. Here, we present three complimentary methods for a fully automated analysis of spontaneous excitatory postsynaptic currents measured in major cell types of the mouse retina and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold methods, while the third represents a novel machine learning-based algorithm. Comparison with frequently used existing methods demonstrates the suitability of our algorithms for an unbiased and efficient analysis of synaptic signals in the central nervous system.
Spontaneous synaptic activity is a hallmark of neural networks. A thorough description of these synaptic signals is essential for understanding neurotransmitter release and the generation of a postsynaptic response. However, the complexity of synaptic current trajectories has either precluded an in-depth analysis or it has forced human observers to resort to manual or semi-automated approaches based on subjective amplitude and area threshold settings. Both procedures are time-consuming, error-prone and likely affected by human bias. Here, we present three complimentary methods for a fully automated analysis of spontaneous excitatory postsynaptic currents measured in major cell types of the mouse retina and in a primary culture of mouse auditory cortex. Two approaches rely on classical threshold methods, while the third represents a novel machine learning-based algorithm. Comparison with frequently used existing methods demonstrates the suitability of our algorithms for an unbiased and efficient analysis of synaptic signals in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.