New therapeutic options for patients with ovarian cancer are urgently needed. Therefore, we evaluated the efficacy of two second-generation mesothelin (MSLN)-directed CAR T cells in orthotopic mouse models of ovarian cancer. Treatment with CAR T cells expressing an MSLN CAR construct including the CD28 domain (M28z) significantly prolonged survival, but no persistent tumor control was observed. Despite lower response rates, MSLN-4-1BB (MBBz) CAR T cells induced long-term remission in some SKOV3-bearing mice. Tumor-infiltrating M28z and MBBz CAR T cells upregulated PD-1 and LAG3 in an antigendependent manner while MSLN þ tumor cells expressed the corresponding ligands (PD-L1 and HLA-DR), demonstrating that coin-hibitory pathways impede CAR T-cell persistence in the ovarian tumor microenvironment. Furthermore, profiling plasma soluble factors identified a cluster of M28z-and MBBz-treated mice characterized by elevated T-cell secreted factors that had increased survival, higher CD8 þ T-cell tumor infiltration, less exhausted CAR T-cell phenotypes, and increased HLA-DR expression by tumor cells. Altogether, our study demonstrates the therapeutic potential of MSLN-CAR T cells to treat ovarian cancer.Significance: These findings demonstrate that MSLN-directed CAR T cells can provide antitumor immunity against ovarian cancer.
Generation of T lymphocytes with reactivity against cancer is a prerequisite for effective adoptive cellular therapies. We established a protocol for tumor-infiltrating lymphocytes (TILs) from patients with pancreatic ductal adenocarcinoma. Tumor samples from 17 pancreatic cancer specimens were cultured with cytokines (IL-2, IL-15, and IL-21) to expand TILs. After 10 days of culture, TILs were stimulated with an anti-CD3 antibody (OKT3) and irradiated allogeneic peripheral blood mononuclear cells. Reactivity of TILs against tumor-associated antigens (mesothelin, survivin, or NY-ESO-1) was detected by intracellular cytokine production by flow cytometry. Cytotoxicity was measured using a Chromium 51 release assay, and reactivity of TILs against autologous tumor cells was detected by INF-[gamma] production (ELISA). TIL composition was tested by CD45RA, CCR7, 4-1BB, LAG-3, PD-1, TIM3, and CTLA-4 marker analysis. TCR V[beta] was determined by flow cytometry and TCR clonality was gauged measuring the CDR3 region length by PCR analysis and subsequent sequencing. We could reliably obtain TILs from 17/17 patients with a majority of CD8(+) T cells. CD3(+)CD8(+), CD3(+)CD4(+), and CD3(+)CD4(-)CD8(-)[double-negative (DN) T cells] resided predominantly in central (CD45RA(-)CCR7(+)) and effector (CD45RA-CCR7-) memory subsets. CD8(+) TILs tested uniformly positive for LAG-3 (about 100%), whereas CD4(+) TILs showed only up to 12% LAG-3(+) staining and PD-1 showed a broad expression pattern in TILs from different patients. TILs from individual patients recognized strongly (up to 11.9% and 8.2% in CD8(+)) NY-ESO-1, determined by ICS, or mesothelin, determined respectively by TNF-[alpha] and IFN-[gamma] production. Twelve of 17 of CD8(+) TILs showed preferential expansion of certain TCR V[beta] families (eg, 99.2% V[beta]13.2 in CD8(+) TILs, 77% in the V[beta]1, 65.9% in the V[beta]22, and 63.3% in the V[beta]14 family). TCR CDR3 analysis exhibited monoclonal or oligoclonal TCRs, some of them (eg, CD8(+) V[beta]13.2) reacting strongly against autologous tumor defined by INF-[gamma] production or by cytotoxicity. We have optimized methods for generating pancreatic cancer–specific TILs that can be used for adoptive cellular therapy of patients with pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.