Ornithine decarboxylase, the rate-limiting enzyme in polyamine biosynthesis, has been shown to be regulated in thyroid by thyrotropin both in vivo and in vitro. Little, however, is known of the role of polyamines in thyroid cell function. Since studies in other tissues suggest that polyamines may influence protein phosphorylation, we studied the effect of the polyamines on various protein kinase activities in rat thyroid. Putrescine, spermidine, and spermine inhibit cyclic-AMP-dependent histone H1 kinase activity when measured in the cytosol fraction of rat thyroid; this effect is largely reproduced by NaCl concentrations of equivalent ionic strength. Both spermidine and spermine effect a 1.6-2.4-fold increase in cytosolic cyclic-AMP-independent (messenger-independent) casein kinase activity; stimulation by both polyamines is maximal at 5mM. A similar profile of stimulation is observed for messenger-independent casein kinase activity in crude nuclear preparations. Sodium chloride fails to stimulate both cytosolic and nuclear messenger-independent casein kinase activities at ionic strength equivalent to the spermine concentrations used. Spermine, but not putrescine, spermidine, or sodium chloride, inhibits calcium/phospholipid-dependent protein kinase C activity in cytosol extracts partially purified by DEAE chromatography. These findings suggest that regulation of protein kinase(s) by polyamines may represent a proximal locus (i) of action of thyrotropin-regulated ornithine decarboxylase activity in thyroid.
A 107 kDa (pp107) casein kinase G (ck-G) substrate has been purified from mouse and beef thyroid cytosol; ck-G was purified from beef thyroid cytosol. Ck-G and pp107 were found to co-elute on DEAE cellulose chromatography at approximately 300 mM NaCl. Ck-G and pp107 were separated by spermine-agarose affinity chromatography; pp107 is eluted with a stepped gradient at 250 mM NaCl and ck-G is eluted at 500 mM NaCl. Ck-G was subsequently purified by casein-agarose and GTP-agarose affinity chromatography. The 107 kDa protein was purified using heparin-agarose affinity chromatography. Phosphorylation of purified pp107 by ck-G was stimulated by spermine (ED50 = 0.2 mM) and inhibited by low concentrations of heparin (0.1-5 micrograms/ml). The Km and Vmax for the reaction were 1.46 microM and 32.2 nmoles P transferred/20 min/mg protein, respectively; 1 mole pp107 incorporated 0.81 mole phosphorus. pp107 was found to be an acidic substrate with a pI of 3.87 and was absorbed to wheat-germ agglutinin-agarose. The specificity of pp107 phosphorylation was studied using diacylglycerol-activated calcium/phospholipid-dependent protein kinase C, calcium-activated calmodulin-dependent protein kinase, and the catalytic subunit of cAMP-dependent protein kinase A. Phosphorylation of pp107 by the other protein kinases tested never exceeded 4% of that of ck-G. Our data show that pp107 is an acidic glycoprotein which may serve as a high-affinity and specific substrate for ck-G.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.