During the last decade, knowledge over episodic tremor and slip (ETS) events has increased dramatically owing to the widespread installation of GPS and seismic networks. The most puzzling observations are (i) the periodic nature of slow seismic events, (ii) their localization at intermediate depths (estimated 15–40 km), and (iii) the origin of the nonvolcanic fluids that are responsible for the tremor activity. We reconcile these observations using a first principles approach relying on physics, continuum mechanics, and chemistry of serpentinite in the megathrust interface. The approach reproduces the GPS sequences of 17 years of recording in Cascadia, North America, as well as over 10 years in the Hikurangi Trench of New Zealand. We show that strongly endothermic reactions, such as serpentinite dehydration, are required for ETS events. We report that in this tectonic setting, it is its chemical reaction kinetics, not the low friction, that marks serpentinite as a key mineral for stable, self‐sustained oscillations. We find that the subduction zone instabilities are driven from the ductile realm rather than the brittle cover. Even when earthquakes in the cover perturb the oscillator, it relaxes to its fundamental mode. Such a transition from stable oscillations to chaos is witnessed in the ETS signal of NZ following the M6.8, 2007 seismic event, which triggered a secondary mode of oscillations lasting for a few years. We consequently suggest that the rich dynamics of ductile modes of failure may be used to decipher the chaotic time sequences underpinning seismic events.
In this paper, we study the behavior of a fluid‐saturated fault under shear, based on the assumption that the material inside exhibits rate‐ and temperature‐dependent frictional behavior. A creeping fault of this type can produce excess heat due to shear heating, reaching temperatures which are high enough to trigger endothermic chemical reactions. We focus on fluid‐release reactions and incorporate excess pore pressure generation and porosity variations due to the chemical effects (a process called chemical pressurization). We provide the mathematical formulation for coupled thermo‐hydro‐chemo‐mechanical processes and study the influence of the frictional, hydraulic, and chemical properties of the material, along with the boundary conditions of the problem on the behavior of the fault. Regimes of stable‐frictional sliding and pressurization emerge, and the conditions for the appearance of periodic creep‐to‐pressurization instabilities are then derived. The model thus extends the classical mechanical stick‐slip instabilities by identifying chemical pressurization as the process governing the slip phase. The different stability regimes identified match the geological observations about subduction zones. The model presented was specifically tested in the Episodic Tremor and Slip sequence of the Cascadia megathrust, reproducing the displacement data available from the GPS network installed. Through this process, we identify that the slow slip events in Cascadia could be due to the in situ dehydration of serpentinite minerals. During this process, the fluid pressures increase to sublithostatic values and lead to the weakening of the creeping slab.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.