Many important endemic and emerging diseases are transmitted by vectors that are biting arthropods. The functional traits of vectors can affect pathogen transmission rates directly and also through their effect on vector population dynamics. Increasing empirical evidence shows that vector traits vary significantly across individuals, populations, and environmental conditions, and at time scales relevant to disease transmission dynamics. Here, we review empirical evidence for variation in vector traits and how this trait variation is currently incorporated into mathematical models of vector-borne disease transmission. We argue that mechanistically incorporating trait variation into these models, by explicitly capturing its effects on vector fitness and abundance, can improve the reliability of their predictions in a changing world. We provide a conceptual framework for incorporating trait variation into vector-borne disease transmission models, and highlight key empirical and theoretical challenges. This framework provides a means to conceptualize how traits can be incorporated in vector borne disease systems, and identifies key areas in which trait variation can be explored. Determining when and to what extent it is important to incorporate trait variation into vector borne disease models remains an important, outstanding question.
Dispersal behaviour plays a key role in social organisation, demography and population genetics. We describe dispersal behaviour in a population of African wild dogs (Lycaon pictus) in Kenya. Almost all individuals, of both sexes, left their natal packs, with 45 of 46 reproductively active “alpha” individuals acquiring their status through dispersal. Dispersal age, group size and distance did not differ between males and females. However, only females embarked on secondary dispersal, probably reflecting stronger reproductive competition among females than males. When dispersing, GPS‐collared wild dogs travelled further than when resident, both in daylight and by night, following routes an order of magnitude longer than the straight‐line distance covered. Dispersers experienced a daily mortality risk three times that experienced by adults in resident packs. The detailed movement data provided by GPS‐collars helped to reconcile differences between dispersal patterns reported previously from other wild dog populations. However, the dispersal patterns observed at this and other sites contrast with those assumed in published demographic models for this endangered species. Given the central role of dispersal in demography, models of wild dog population dynamics need to be updated to account for improved understanding of dispersal processes.
The degree to which arthropod populations will be able to adapt to climatic warming is uncertain. Here, we report that arthropod thermal adaptation is likely to be constrained in two fundamental ways. First, maximization of population fitness with warming is predicted to be determined predominantly by the temperature of peak performance of juvenile development rate, followed by that of adult fecundity, juvenile mortality and adult mortality rates, in this specific order. Second, the differences among the temperature of peak performance of these four traits will constrain adaptation. By compiling a new global dataset of 61 diverse arthropod species, we show that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of arthropod populations to climatic warming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.