Computer simulation is a convenient and frequently used tool in the study of x-ray mammography, for the design of novel detector systems, the evaluation of dose deposition, x-ray technique optimization, and other applications. An important component in the simulation process is the accurate computer-generation of x-ray spectra. A computer model for the generation of x-ray spectra in the mammographic energy range from 18 kV to 40 kV has been developed. The proposed model requires no assumptions concerning the physics of x-ray production in an x-ray tube, but rather makes use of x-ray spectra recently measured experimentally in the laboratories of the Center for Devices and Radiological Health. Using x-ray spectra measured for molybdenum, rhodium, and tungsten anode x-ray tubes at 13 different kV's (18, 20, 22, ..., 42 kV), a spectral model using interpolating polynomials was developed. At each energy in the spectrum, the x-ray photon fluence was fit using 2, 3, or 4 term (depending on the energy) polynomials as a function of the applied tube voltage (kV). Using the polynomial fit coefficients determined at each 0.5 keV interval in the x-ray spectrum, accurate x-ray spectra can be generated for any arbitrary kV between 18 and 40 kV. Each anode material (Mo, Rh, W) uses a different set of polynomial coefficients. The molybdenum anode spectral model using interpolating polynomials is given the acronym MASMIP, and the rhodium and tungsten spectral models are called RASMIP and TASMIP, respectively. It is shown that the mean differences in photon fluence calculated over the energy channels and over the kV range from 20 to 40 kV were -0.073% (sigma = 1.58%) for MASMIP, -0.145% (sigma = 1.263%) for RASMIP, and 0.611% (sigma = 2.07%) for TASMIP. The polynomial coefficients for all three models are given in an Appendix. A short C subroutine which uses the polynomial coefficients and generates x-ray spectra based on the proposed model is available on the World Wide Web at http:/(/)www.aip.org/epaps/epaps.html.
X-ray spectra produced by mammographic systems are compared to spectra from conventional diagnostic x-ray systems. Some systems use special anode materials and beam filters to produce x-ray spectra more suitable for mammography. The data show that the spectra produced by some systems are unique; in fact, one using molybdenum for both an anode and beam filtering element can produce an x-ray spectrum having more than 80% of the photons below 20 KeV. Using some typical breast phantom materials as attenuators, the primary x-ray spectra incident upon the imaging system were simulated and displayed. Implications of spectral shaping to image quality and patient dose are discussed.
Single- and three-phase broad-beam x-ray attenuation data have been obtained using lead, steel, plate glass, gypsum wallboard, lead acrylic, and wood. Tube voltages of 50, 70, 100, 125, and 150 kVp were employed and the resulting curves were compared to transmission data found in the literature. To simplify computation of barrier requirements, all data sets were parametrized by nonlinear least-squares fit to a previously described mathematical model. High attenuation half value layers and the lead equivalence of the alternate materials were also determined.
A high-purity germanium spectrometer system was used to determine primary x-ray spectra over the 45--90-kVp region. Methods were devised for producing and examining spectra stimulating diagnostic conditions without operating the x-ray generator at high current levels. The techniques used to correct the experimental data and produce a photon fluence spectrum are discussed. The results, presented graphically and in tables, have been normalized to yield the relative number of photons per 2-keV interval. Methods for converting a normalized spectrum into a photon fluence spectrum that will produce an exposure of 1 R are presented. The analytical model and procedures used to calculate the K-escape fraction are discussed.
The periodic assessment of exposures in diagnostic radiology is an important part of a comprehensive quality assurance program. The most frequent radiologic examination conducted in the United States is chest radiography. Automatic exposure controlled (AEC) techniques are often used for this exam, and a standard patient-equivalent chest phantom is useful when estimating patient exposures on such systems. This is of particular importance if exposures are to be compared among AEC systems with different entrance x-ray spectra. Such a phantom has been developed to facilitate surveys of the average patient exposure from AEC posteroanterior chest radiography. The phantom is relatively lightweight and easily transportable, sturdy and made of readily available and relatively inexpensive materials (Lucite and aluminum). It accurately simulates the primary and scatter transmission through the lung-field regions of a patient-equivalent anthropomorphic phantom for x-ray spectra typically used in chest radiography. A clinical evaluation has been conducted to verify the patient equivalence of the phantom. Measurements of patient entrance skin exposure were obtained for a large number of patients on a variety of x-ray systems operated in the AEC mode using one or both lung-field detectors. Comparison of these data with exposure estimates derived from the phantom indicate that the phantom attenuates the x-ray beam in such a way that it can be employed to accurately and consistently estimate the mean exposure of the average patient under a variety of radiographic conditions. The design, development, and evaluation of the patient-equivalent attenuation phantom is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.