Using numerical calculations, we compare three versions of the Barrett-Crane model of 4-dimensional Riemannian quantum gravity. In the version with face and edge amplitudes as described by De Pietri, Freidel, Krasnov, and Rovelli, we show the partition function diverges very rapidly for many triangulated 4-manifolds. In the version with modified face and edge amplitudes due to Perez and Rovelli, we show the partition function converges so rapidly that the sum is dominated by spin foams where all the spins labelling faces are zero except for small, widely separated islands of higher spin. We also describe a new version which appears to have a convergent partition function without drastic spin-zero dominance. Finally, after a general discussion of how to extract physics from spin foam models, we discuss the implications of convergence or divergence of the partition function for other aspects of a spin foam model.
We consider a coded cooperative data exchange problem with the goal of generating a secret key. Specifically, we investigate the number of public transmissions required for a set of clients to agree on a secret key with probability one, subject to the constraint that it remains private from an eavesdropper.Although the problems are closely related, we prove that secret key generation with fewest number of linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative data exchange can be solved in polynomial time. In doing this, we completely characterize the bestpossible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal. Finally, we extend the single-key results to characterize the minimum number of public transmissions required to generate a desired integer number of statistically independent secret keys.
A number of authors have recently considered iterative soft-in soft-out (SISO) decoding algorithms for classical linear block codes that utilize redundant Tanner graphs. Jiang and Narayanan presented a practically realizable algorithm that applies only to cyclic codes while Kothiyal et al. presented an algorithm that, while applicable to arbitrary linear block codes, does not imply a low-complexity implementation. This work first presents the aforementioned algorithms in a common framework and then presents a related algorithm-random redundant iterative decoding-that is both practically realizable and applicable to arbitrary linear block codes. Simulation results illustrate the successful application of the random redundant iterative decoding algorithm to the extended binary Golay code. Additionally, the proposed algorithm is shown to outperform Jiang and Narayanan's algorithm for a number of Bose-Chaudhuri-Hocquenghem (BCH) codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.