Our investigations concerning the importance of cell surface macromolecules during embryonic development led us to the discovery in 1961 that heterologous anti-rat kidney serum produced teratogenesis, growth retardation and embryonic death when injected into the pregnant rat during early organogenesis. It was established that IgG was the teratogenic agent, primarily directed against the visceral yolk sac (VYS) but not the embryo. Heterologous anti-rat VYS serum was prepared which was teratogenic localized in the VYS and served as a model for producing VYS dysfunction and embryonic malnutrition. The role of the yolk sac placenta in histiotrophic nutrition is now recognized to be critical for normal embryonic development during early organogenesis in the rodent. VYS antiserum affects embryonic development primarily by inhibiting endocytosis of proteins by the VYS endoderm, resulting in a reduction in the amino acids supplied to the embryo. Our laboratory has recently developed teratogenic monoclonal yolk sac antibodies (MCA) which can be utilized; to study VYS plasma membrane synthesis and recycling, to compare yolk sac function among different species, and to identify components of the plasma membrane involved in pinocytosis. MCA prepared against certain VYS antigens provide an opportunity to study embryonic nutrition with minimal interference with the nutritional state of the mother. Recent developments in the study of the human yolk sac along with our laboratory's ability to isolate a spectrum of yolk sac antigens, prepare monoclonal antibodies, and perform functional studies, should provide information that will increase our understanding of yolk sac function and dysfunction in the human and determine the relative importance of various amino acids to normal development during mammalian organogenesis.
The visceral yolk sac (VYS) is an especially important placental organ in the rodent because it is the primary source of exchange between the embryo and mother during early organogenesis before the chorioallantoic placenta circulation is established. The VYS is involved with nutritional, endocrine, metabolic, immunologic, secretory, excretory, and hematopoietic functions. The VYS also plays a role in steroid metabolism and interacts with a variety of blood-borne factors: parathyroid hormone, glucocorticoids, insulin, and vitamin D metabolites. The importance of the VYS during development is emphasized by the embryotoxicity resulting from exposure to agents which cause VYS dysfunction when administered to the pregnant animal during organogenesis. Several experimental procedures have provided useful information concerning a variety of VYS functions from early organogenesis to term: Culture of the Embryo, Fetal Incubation, Culture of the Fetus, Giant Yolk Sac, Short- and Long-Term Culture of the Yolk Sac, Modified Ussing's Chamber, Single or Double Diffusion Chamber, and the use of Heterologous Rodent Visceral Yolk Sac Antibodies. Since human yolk sac pathology has been associated with developmental toxicity and spontaneous abortion, it is important to discover whether there are some common functional roles among different mammalian species and to determine if other experimental animal models can be used to study the possible contribution of human yolk sac dysfunction to some human reproductive problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.