We use time-resolved laser-induced fluorescence to measure the lifetime of 186 Fe levels with energies between 25 900 and 60 758 cm . Measured emission branching fractions for these levels yield transition probabilities for 1174 transitions in the range 225-2666 nm. We find another 640 Fe transition probabilities by interpolating level populations in the inductively coupled plasma spectral source. We demonstrate the reliability of the interpolation method by comparing our transition probabilities with absorption oscillator strengths measured by the Oxford group [Blackwell et al., Mon. Not. R. Astron. Soc. 201, 595-602 (1982)]. We derive precise Fe level energies to support the automated method that is used to identify transitions in our spectra.
We have extended two-photon Doppler-free spectroscopy to the vacuum ultraviolet spectral region, to accurately measure the He 1 1 S-2 1 S transition at 120 nm. Our result is 4 984 872 315 (48) MHz. This yields a ground state Lamb shift of 41 104(48) MHz, in fair agreement with theory and other experiments. This approach has the potential for significantly better accuracy once improvements in the laser and the wavelength metrology are implemented. [S0031-9007(98)
The combination of a cryogenic radiometer and synchrotron radiation enables detector scale realization in spectral regions that are otherwise difficult to access. Cryogenic radiometry is the most accurate primary detector-based standard available to date, and synchrotron radiation gives a unique broadband and continuous spectrum that extends from x ray to far IR. We describe a new cryogenic radiometer-based UV radiometry facility at the Synchrotron Ultraviolet Radiation Facility II at the National Institute of Standards and Technology. The facility is designed to perform a variety of detector and optical materials characterizations. The facility combines a high-throughput, normal incidence monochromator with an absolute cryogenic radiometer optimized for UV measurements to provide absolute radiometric measurements in the spectral range from 125 nm to approximately 320 nm. We discuss results on photodetector characterizations, including absolute spectroradiometric calibration, spatial responsivity mapping, spectroreflectance, and internal quantum efficiency. In addition, such characterizations are used to study UV radiation damage in photodetectors that can shed light on the mechanism of the damage process. Examples are also given for UV optical materials characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.