Particle film technology is a developing pest control system for tree fruit production systems. Trials were performed in Santiago, Chile, and York Springs, Pa., Wenatchee and Yakima, Wash., and Kearneysville, W. Va., to evaluate the effect of particle treatments on apple [Malus sylvestris (L.) Mill. var. domestica (Borkh) Manst.] leaf physiology, fruit yield, and fruit quality. Leaf carbon assimilation was increased and canopy temperatures were reduced by particle treatments in seven of the eight trials. Yield and/or fruit weight was increased by the particle treatments in seven of the eight trials. In Santiago and Kearneysville, a* values of the fruit surface were more positive in all trials although a* values were not increased in Wenatchee and Yakima. Results indicate that particle film technology is an effective tool in reducing heat stress in apple trees that may result in increased yield potential and quality.
Cacopsylla pyricola (Förster) is one of the most important pests of pear in North America, where several native predators have been considered for integrated pest management (IPM) programmes. Two molecular markers of 271 and 188 bp were developed from C. pyricola cytochrome oxidase I (COI) fragments, in order to study the detection of this species in the gut of arthropod predators. Primer sensitivity and the detection period for pear psylla remains in the guts of Anthocoris tomentosus Pericart were determined. The sensitivity threshold was defined at 10-5 dilution of a C. pyricola fifth-instar nymph in all samples. Predator adults were evaluated immediately after ingestion of one to five C. pyricola nymphs (t = 0) and after 2, 4, 6, 8, 16, 24 and 32 h. Detection of the presence of C. pyricola DNA always lasted longer using the shorter fragment and was observed after 32 h of digestion using both markers. The primers amplifying the 188 bp fragment amplified all four psyllid species tested, whereas the primers designed to amplify the 271 bp fragment did so exclusively for C. pyricola and its close relative, Cacopsylla pyri (Linnaeus). Both primers failed to amplify DNA from representative species of the Coccinellidae, Chrysopidae, Hemerobiidae, Anthocoridae, Miridae, Salticidae, Aphididae, Tetranychidae and the Tortricidae, suggesting their suitability for general trophic studies.
The seminal work of Stern and his coauthors on integrated control has had a profound and long-lasting effect on the development of IPM programs in western orchard systems. Management systems based solely on pesticides have proven to be unstable, and the success of IPM systems in western orchards has been driven by conservation of natural enemies to control secondary pests, combined with pesticides and mating disruption to suppress the key lepidopteran pests. However, the legislatively mandated changes in pesticide use patterns prompted by the Food Quality Protection Act of 1996 have resulted in an increased instability of pest populations in orchards because of natural enemy destruction. The management system changes have made it necessary to focus efforts on enhancing biological control not only of secondary pests but also of primary lepidopteran pests to help augment new pesticides and mating disruption tactics. The new management programs envisioned will be information extensive as well as time sensitive and will require redesign of educational and outreach programs to be successful. The developing programs will continue to use the core principles of Stern and his co-authors, but go beyond them to incorporate changes in society, technology and information transfer, as needed.
Studies were conducted in 1997 and 1998 to evaluate the effects of three particle film formulations consisting of kaolin and adjuvants on neonate larvae, ovipositing adult females, and eggs of the codling moth, Cydia pomonella (L.). Neonate larval walking speed, fruit discovery rate, and fruit penetration rate on apple host plants coated with particle films were significantly lower than on host plants without particle films in laboratory assays. Females oviposited less on host plants covered with a particle film residue than on untreated plants in laboratory choice and no-choice tests. Hatch rate of codling moth neonate larvae was unaffected by particle films sprayed on host plants either before or after oviposition. Fruit infestation rates were significantly reduced on particle film-treated trees compared with untreated trees for both first- and second-generation codling moth in field trials in both apple and pear orchards. Particle films appear to be a promising supplemental control approach for codling moth in orchards where moth density is high, and may represent a stand-alone method where moth densities are lower.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.