Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
Aim Differentiation of sites or communities is often measured by partitioning regional or gamma diversity into additive or multiplicative alpha and beta components. The beta component and the ratio of within-group to total diversity (alpha/gamma) are then used to infer the compositional differentiation or similarity of the sites. There is debate about the appropriate measures and partitioning formulas for this purpose. We test the main partitioning methods, using empirical and simulated data, to see if some of these methods lead to false conclusions, and we show how to resolve the problems that we uncover. Location South America, Ecuador, Orellana province, Rio Shiripuno. Methods We construct sets of real and simulated tropical butterfly communities that can be unambiguously ranked according to their degree of differentiation. We then test whether beta and similarity measures from the different partitioning approaches rank these datasets correctly. Results The ratio of within-group diversity to total diversity does not reflect compositional similarity, when the Gini-Simpson index or Shannon entropy are used to measure diversity. Additive beta diversity based on the Gini-Simpson index does not reflect the degree of differentiation between N sites or communities. Main conclusions The ratio of within-group to total diversity (alpha/gamma) should not be used to measure the compositional similarity of groups, if diversity is equated with Shannon entropy or the Gini-Simpson index. Conversion of these measures to effective number of species solves these problems. Additive Gini-Simpson beta diversity does not directly reflect the differentiation of N samples or communities. However, when properly transformed onto the unit interval so as to remove the dependence on alpha and N, additive and multiplicative beta measures yield identical normalized measures of relative similarity and differentiation
~ ~ ~To test the veracity of previous studies and illuminate major community patterns from an intact community, a guild of nymphalid butterflies was sampled at monthly intervals for five consecutive years by trapping in the canopy and understorey of five contiguous forest plots in the same rainforest. Significant numbers of species belonged to either the canopy or understorey fauna, confirming fundamental vertical stratification, and showing that sampling in one vertical position is a poor estimator of diversity. Significant monthly variation showed that intermittent or short-term sampling would underestimate diversity, and significant variation among years and areas showed that diversity was strongly influenced by sampling year. Even when the underlying communities were the same, temporal interactions strongly affected species diversity in both horizontal and vertical dimensions. An unprecedented seasonal inversion of species richness and abundance was detected between the canopy and understorey that occurred at the onset of all rainy seasons. This investigation suggests that long-term studies evaluating spatial and temporal patterns of species diversity among many sites may be required for a better understanding of tropical communities and how best t o conserve them.
Diversity in biological communities frequently is compared using species accumulation curves, plotting observed species richness versus sample size. When species accumulation curves intersect, the ranking of communities by observed species richness depends on sample size, creating inconsistency in comparisons of diversity. We show that species accumulation curves for two communities are expected to intersect when the community with lower actual species richness has higher Simpson diversity (probability that two random individuals belong to different species). This may often occur when comparing communities that differ in habitat heterogeneity or disturbance, as we illustrate using data from neotropical butterflies. In contrast to observed species richness, estimated Simpson diversity always produces a consistent expected ranking among communities across sample sizes, with the statistical accuracy to confidently rank communities using small samples. Simpson diversity should therefore be particularly useful in rapid assessments to prioritize areas for conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.