We present an up-to-date, comprehensive summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo. Astrophysical estimates for compact-binary coalescence rates depend on a number of assumptions and unknown model parameters and are still uncertain. The most confident among these estimates are the rate predictions for coalescing binary neutron stars which are based on extrapolations from observed binary pulsars in our galaxy. These yield a likely coalescence rate of 100 Myr−1 per Milky Way Equivalent Galaxy (MWEG), although the rate could plausibly range from 1 Myr−1 MWEG−1 to 1000 Myr−1 MWEG−1 (Kalogera et al 2004 Astrophys. J. 601 L179; Kalogera et al 2004 Astrophys. J. 614 L137 (erratum)). We convert coalescence rates into detection rates based on data from the LIGO S5 and Virgo VSR2 science runs and projected sensitivities for our advanced detectors. Using the detector sensitivities derived from these data, we find a likely detection rate of 0.02 per year for Initial LIGO–Virgo interferometers, with a plausible range between 2 × 10−4 and 0.2 per year. The likely binary neutron–star detection rate for the Advanced LIGO–Virgo network increases to 40 events per year, with a range between 0.4 and 400 per year.
Abstract. We describe Cactus, a framework for building a variety of computing applications in science and engineering, including astrophysics, relativity and chemical engineering. We first motivate by example the need for such frameworks to support multi-platform, high performance applications across diverse communities. We then describe the design of the latest release of Cactus (Version 4.0) a complete rewrite of earlier versions, which enables highly modular, multi-language, parallel applications to be developed by single researchers and large collaborations alike. Making extensive use of abstractions, we detail how we are able to provide the latest advances in computational science, such as interchangeable parallel data distribution and high performance IO layers, while hiding most details of the underlying computational libraries from the application developer. We survey how Cactus 4.0 is being used by various application communities, and describe how it will also enable these applications to run on the computational Grids of the near future.
Application Frameworks in Scientific ComputingVirtually all areas of science and engineering, as well as an increasing number of other fields, are turning to computational science to provide crucial tools to further their disciplines. The increasing power of computers offers unprecedented ability to solve complex equations, simulate natural and man-made complex processes, and visualise data, as well as providing novel possibilities such as new forms of art and entertainment. As computational power advances rapidly, computational tools, libraries, and computing paradigms themselves also advance. In such an environment, even experienced computational scientists and engineers can easily find themselves falling behind the pace of change, while they redesign and rework their codes to support the next computer architecture. This
a b s t r a c tThe Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space-time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.