We report on the γ -ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ -ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F (>0.3 GeV) = (7.23 ± 0.16) × 10 −8 ph cm −2 s −1 . Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ∼3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ -rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.
We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, dust-gas mixtures, H2 chemistry, physical viscosity, external forces including numerous galactic potentials, Lense-Thirring precession, Poynting-Robertson drag and stochastic turbulent driving. Phantom is hereby made publicly available.
We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (10 44 erg s −1) constitutes only a small fraction (∼10 −3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
We present hydrodynamic simulations of the common envelope binary interaction between a giant star and a compact companion carried out with the adaptive mesh refinement code enzo and the smooth particle hydrodynamics code phantom. These simulations mimic the parameters of one of the simulations by Passy et al., but assess the impact of a larger, more realistic initial orbital separation on the simulation outcome. We conclude that for both codes the post-common envelope separation is somewhat larger and the amount of unbound mass slightly greater when the initial separation is wide enough that the giant does not yet overflow or just overflows its Roche lobe. phantom has been adapted to the common envelope problem here for the first time and a full comparison with enzo is presented, including an investigation of convergence as well as energy and angular momentum conservation. We also set our simulations in the context of past simulations. This comparison reveals that it is the expansion of the giant before rapid in-spiral and not spinning up of the star that causes a larger final separation. We also suggest that the large range in unbound mass for different simulations is difficult to explain and may have something to do with simulations that are not fully converged.
We have simulated a common envelope interaction of a 0.88-M , 90-R , red giant branch star and a 0.6-M , compact companion with the smoothed particle hydrodynamics code, phantom, from the beginning of the Roche lobe overflow phase to the beginning of the self-regulated inspiral, using three different resolutions. The duration of the Roche lobe overflow phase is resolution dependent and would lengthen with increased resolution beyond the ∼20 years observed, while the inspiral phase and the post-common envelope separation are largely independent of resolution. Mass transfer rates through the Lagrangian points drive the orbital evolution during the Roche lobe overflow phase, as predicted analytically. The absolute mass transfer rate is resolution dependent, but always within an order of magnitude of the analytical value. Similarly, the gravitational drag in the simulations is close to the analytical approximation. This gives us confidence that simulations approximate reality. The L 2 and L 3 outflow observed during Roche lobe overflow remains bound, forming a circumbinary disk that is largely disrupted by the common envelope ejection. However, a longer phase of Roche lobe overflow and weaker common envelope ejection typical of a more stable binary may result in a surviving circumbinary disk. Finally, we examine the density distribution resulting from the interaction for simulations that include or omit the phase of Roche lobe overflow. We conclude that the degree of stability of the Roche lobe phase may modulate the shape of the subsequent planetary nebula, explaining the wide range of post-common envelope planetary nebula shapes observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.