Wastewater treatment plants (WWTPs) serve as point-source inputs for a variety of nutrients often dominated by nitrogenous compounds as a result of anthropogenic influence. These effluents can impact biogeochemical cycles in freshwater estuaries, influencing microbial communities in both the water and sediment compartments. To assess the impact of point source nutrients, a transect of sediment and pore water samples were collected from 4 locations in the Little River Sub-watershed including locations above and below the Little River Pollution Control Plant (LRPCP). Variation in chemistry and microbial community/gene expression revealed significant influences of the effluent discharge on the adjacent sediments. Phosphorus and sulfur showed high concentrations within plume sediments compared to the reference sediments while nitrate concentrations were low. Increased abundance of denitrifiers Dechloromonas, Dok59 and Thermomonas correlating with increased expression of nitrous-oxide reductase suggests a conversion of NO to N within the LRPCP effluent sediments. This study provides valuable insight into the gene regulation of microbes involved in N metabolism (denitrification, nitrification, and nitrite reduction to ammonia) within the sediment compartment influenced by wastewater effluent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.