Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole.
SummaryWhen grown in short day conditions and at low light, leaves of Arabidopsis plants with mutations in the genes encoding two plastidial ATP/ADP transporters (so-called null mutants) spontaneously develop necrotic lesions. Under these conditions, the mutants also display light-induced accumulation of H 2 O 2 and constitutive expression of genes for copper/zinc superoxide dismutase 2 and ascorbate peroxidase 1. In the light phase, null mutants accumulate high levels of phototoxic protoporphyrin IX but have only slightly reduced levels of Mg protoporphyrin IX. The physiological changes are associated with reduced magnesium-chelatase activity. Since the expression of genes encoding any of the three subunits of magnesium-chelatase is similar in wild type and null mutants, decreased enzyme activity is probably due to post-translational modification which might be due to limited availability of ATP in plastids during the night. Surprisingly, the formation of necrotic lesions was absent when null mutants were grown either in long days and low light intensity or in short days and high light intensity. We ascribe the lack of lesion phenotype to increased nocturnal ATP supply due to glycolytic degradation of starch which may lead to additional substrate-level phosphorylation in the stroma. Thus, nocturnal import of ATP into chloroplasts represents a crucial, previously unknown process that is required for controlled chlorophyll biosynthesis and for preventing photooxidative damage.
When grown under short-day conditions at low light, leaves of an Arabidopsis thaliana (accession Col-0) mutant with defects in the two genes encoding plastid ATP/ADP antiporters (so-called ntt1-2 null mutants) display a variety of physiological changes. These include the formation of necrotic lesions and the accumulation of hydrogen peroxide in the leaves. Here, we show that, under short-day conditions, leaves of the ntt1-2 mutant display enhanced resistance to Hyaloperonospora arabidopsidis, Botrytis cinerea, and Pseudomonas syringae pv. tomato DC3000. Resistance to these pathogens was associated with constitutively elevated levels of the plant hormone salicylic acid and, eventually, jasmonic acid, and constitutive or primed activation after pathogen attack of various defense genes that are dependent on these hormones. In addition, the antagonistic crosstalk between the salicylic acid and jasmonic acid signaling pathways seems to be affected in ntt1-2. Because the enhanced resistance of ntt1-2 to H. arabidopsidis was not seen when the mutant was grown under long-day conditions, our findings argue that nocturnal ATP import into chloroplasts is crucial to keep A. thaliana from runaway activation of pathogen resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.