Poly(phenylene methylene) (PPM) is a multifunctional polymer featuring hydrophobicity, high thermal stability, fluorescence and thermoplastic processability. Accordingly, smart corrosion resistant PPM-based coatings (blend and copolymer) were prepared and applied by hot pressing on aluminum alloy AA2024. The corrosion protection properties of the coatings and their dependence on coating thickness were evaluated for both strategies employed. The accelerated cyclic electrochemical technique (ACET), based on a combination of electrochemical impedance spectroscopy (EIS), cathodic polarizations and relaxation steps, was used as the main investigating technique. At the coating thickness of about 50 µm, both blend and copolymer PPM showed effective corrosion protection, as reflected by |Z|0.01Hz of about 108 Ω cm2 over all the ACET cycles. In contrast, when the coating thickness was reduced to 30 µm, PPM copolymer showed neatly better corrosion resistance than blended PPM, maintaining |Z|0.01Hz above 108 Ω cm2 with respect to values below 106 Ω cm2 of the latter. Furthermore, the analysis of many electrochemical key features, in combination with the optical investigation of the coating surface under 254 nm UV light, confirms the intrinsic self-healing ability of the coatings made by PPM copolymer, contrary to the reference specimen (i.e., blend PPM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.