Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial properties. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving spatially confined (regioselective modification of C6-OH) and dynamic surface functionalization. No polymer degradation or crosslinking nor changes in crystallinity occur under the mild conditions of the process and the modification is fully reversible, which offers a significant opportunity for the reconstitution of the interfaces back to the native states, chemically and structurally. Consequently, access to 3D structuring of native elementary cellulose fibrils is made possible with the same supramolecular features as the bio-synthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.
Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial properties. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving spatially confined (regioselective modification of C6-OH) and dynamic surface functionalization. No polymer degradation or crosslinking nor changes in crystallinity occur under the mild conditions of the process and the modification is fully reversible, which offers a significant opportunity for the reconstitution of the interfaces back to the native states, chemically and structurally. Consequently, access to 3D structuring of native elementary cellulose fibrils is made possible with the same supramolecular features as the bio-synthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.