The NMDA (N-methyl-D-aspartate) subclass of glutamate receptor is essential for the synaptic plasticity thought to underlie learning and memory and for synaptic refinement during development. It is currently believed that the NMDA receptor (NMDAR) is a heteromultimeric channel comprising the ubiquitous NR1 subunit and at least one regionally localized NR2 subunit. Here we report the characterization of a regulatory NMDAR subunit, NR3A (formerly termed NMDAR-L or chi-1), which is expressed primarily during brain development. NR3A co-immunoprecipitates with receptor subunits NR1 and NR2 in cerebrocortical extracts. In single-channel recordings from Xenopus oocytes, addition of NR3A to NR1 and NR2 leads to the appearance of a smaller unitary conductance. Genetic knockout of NR3A in mice results in enhanced NMDA responses and increased dendritic spines in early postnatal cerebrocortical neurons. These data suggest that NR3A is involved in the development of synaptic elements by modulating NMDAR activity.
. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 87: 2052-2063, 2002; 10.1152/jn.00531.2001. Recently, we cloned and began to characterize a new N-methyl-D-aspartate receptor (NMDAR) subunit, NR3A. Here we extend our earlier findings by showing that recombinantly expressed NR3A in COS cells is biochemically associated with both NR1 and NR2 subunits. In the oocyte or HEK 293 cell expression systems, co-injection of NR3A with NR1/NR2 subunits acts in a dominant-interfering manner, resulting in a decrease in NMDAR unitary conductance, decrease in Ca 2ϩ permeability, decrease in Mg 2ϩ sensitivity, and slight increase in mean open time compared with NR1/NR2 channels. The smaller unitary conductance channel has also been observed in primary cortical neurons cultured from wild-type rodent on postnatal day 8 (P8) and similarly found to be relatively insensitive to Mg 2ϩ block. Consistent with these findings, whole cell NMDA-evoked currents are larger in NR3A-deficient mice compared with wild-type mice, and this effect follows a developmental pattern similar to that of NR3A protein expression on Western blots, with peak expression at P8. Finally, a new longer splice variant of NR3A has been cloned and found to be expressed in rodent cortical neurons by single-cell RT-PCR and in situ hybridization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.