To analyse large corpora using machine learning and other Natural Language Processing (NLP) algorithms, the corpora need to be standardized. The BioC format is a community-driven simple data structure for sharing text and annotations, however there is limited access to biomedical literature in BioC format and a lack of bioinformatics tools to convert online publication HTML formats to BioC. We present Auto-CORPus (Automated pipeline for Consistent Outputs from Research Publications), a novel NLP tool for the standardization and conversion of publication HTML and table image files to three convenient machine-interpretable outputs to support biomedical text analytics. Firstly, Auto-CORPus can be configured to convert HTML from various publication sources to BioC. To standardize the description of heterogenous publication sections, the Information Artifact Ontology is used to annotate each section within the BioC output. Secondly, Auto-CORPus transforms publication tables to a JSON format to store, exchange and annotate table data between text analytics systems. The BioC specification does not include a data structure for representing publication table data, so we present a JSON format for sharing table content and metadata. Inline tables within full-text HTML files and linked tables within separate HTML files are processed and converted to machine-interpretable table JSON format. Finally, Auto-CORPus extracts abbreviations declared within publication text and provides an abbreviations JSON output that relates an abbreviation with the full definition. This abbreviation collection supports text mining tasks such as named entity recognition by including abbreviations unique to individual publications that are not contained within standard bio-ontologies and dictionaries. The Auto-CORPus package is freely available with detailed instructions from GitHub at: https://github.com/omicsNLP/Auto-CORPus.
The GWAS Central resource gathers and curates extensive summary-level genome-wide association study (GWAS) data and puts a range of user-friendly but powerful website tools for the comparison and visualisation of GWAS data at the fingertips of researchers. Through our continued efforts to harmonise and import data received from GWAS authors and consortia, and data sets actively collected from public sources, the database now contains over 72.5 million P-values for over 5000 studies testing over 7.4 million unique genetic markers investigating over 1700 unique phenotypes. Here, we describe an update to integrate this extensive data collection with mouse disease model data to support insights into the functional impact of human genetic variation. GWAS Central has expanded to include mouse gene–phenotype associations observed during mouse gene knockout screens. To allow similar cross-species phenotypes to be compared, terms from mammalian and human phenotype ontologies have been mapped. New interactive interfaces to find, correlate and view human and mouse genotype–phenotype associations are included in the website toolkit. Additionally, the integrated browser for interrogating multiple association data sets has been updated and a GA4GH Beacon API endpoint has been added for discovering variants tested in GWAS. The GWAS Central resource is accessible at https://www.gwascentral.org/.
MotivationThe availability of improved natural language processing (NLP) algorithms and models enable researchers to analyse larger corpora using open source tools. Text mining of biomedical literature is one area for which NLP has been used in recent years with large untapped potential. However, in order to generate corpora that can be analyzed using machine learning NLP algorithms, these need to be standardized. Summarizing data from literature to be stored into databases typically requires manual curation, especially for extracting data from result tables.ResultsWe present here an automated pipeline that cleans HTML files from biomedical literature. The output is a single JSON file that contains the text for each section, table data in machine-readable format and lists of phenotypes and abbreviations found in the article. We analyzed a total of 2,441 Open Access articles from PubMed Central, from both Genome-Wide and Metabolome-Wide Association Studies, and developed a model to standardize the section headers based on the Information Artifact Ontology. Extraction of table data was developed on PubMed articles and fine-tuned using the equivalent publisher versions.AvailabilityThe Auto-CORPus package is freely available with detailed instructions from Github at https://github.com/jmp111/AutoCORPus/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.