Unsteady flow dynamics in turbine rim seals are known to be complex and attempts accurately to predict the interaction of the mainstream flow with the secondary air system cooling flows using CFD with RANS turbulence models have proved difficult. In particular, published results from RANS models have over-predicted the sealing effectiveness of the rim seal, although their use in this context continues to be common. Previous authors have ascribed this discrepancy to the failure to model flow structures with a scale greater than can be captured in the small sector models typically used. This paper presents results from a series of Large-Eddy Simulations (LES) of a turbine stage including a rim seal and rim cavity for, it is believed by the authors, the first time. The simulations were run at a rotational Reynolds number Reθ = 2.2 × 106 and a main annulus axial Reynolds number Rex = 1.3 × 106 and with varying levels of coolant mass flow. Comparison is made with previously published experimental data and with unsteady RANS simulations. The LES models are shown to be in closer agreement with the experimental sealing effectiveness than the unsteady RANS simulations. The result indicates that the previous failure to predict rim seal effectiveness was due to turbulence model limitations in the turbine rim seal flow. Consideration is given to the flow structure in this region.
To estimate the impact on energy production and environment of tidal turbines placed in the Eastern Scheldt Storm Surge Barrier a Computational Fluid Dynamics (CFD) study has been carried out on the additional head differences induced by the turbines. The CFD model focusses on a single gate opening of the Storm Surge Barrier and includes half of the adjoining gates on either side. In this 40 m wide Gate a 1.2 MW array existing of five Tocardo T2 tidal turbines has been installed as part of a demonstration project in 2015. Transient computations of the barrier with and without the turbine array were carried out for a range of quasi stationary tidal phases. The turbines are resolved in detail as rotating equipment: real-time rotation of the turbine blades (involving the displacement of the mesh nodes in an unsteady setting) is implemented, and torque and thrust for the prescribed speed of rotation is provided as output. The results for velocity, power and thrust are compared with field experiments to validate the model. Based on these computations an estimate of the effect of turbines on the discharge capacity of the storm surge barrier is given. This information will be used to parameterize the tidal turbines in the far-field hydrodynamic model of Eastern Scheldt estuary for the ultimate assessment of the effect of tidal turbines on energy production and on the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.