ABSTRACT:A novel relay method has been developed using cryopreserved human hepatocytes to measure intrinsic clearance of low-clearance compounds. The relay method involved transferring the supernatant from hepatocyte incubations to freshly thawed hepatocytes at the end of the 4-h incubation to prolong the exposure time to active enzymes in hepatocytes. An accumulative incubation time of 20 h or longer in hepatoctyes can be achieved using the method. The relay method was validated using seven commercial drugs (diazepam, disopyramide, theophylline, timolol, tolbutamide, S-warfarin, and zolmitriptan) that were metabolized by various cytochrome P450s with low human in vivo intrinsic clearance at approximately 2 to 15 ml ⅐ min ؊1 ⅐ kg ؊1. The results showed that the relay method produced excellent predictions of human in vivo clearance. The difference between in vitro and in vivo intrinsic clearance was within 2-fold for most compounds, which is similar to the standard prediction accuracy for moderate to high clearance compounds using hepatocytes. The relay method is a straightforward, relatively low cost, and easy-to-use new tool to address the challenges of low clearance in drug discovery and development.
ABSTRACT:The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent occurrence of agranulocytosis. The detection of autoantibodies such as antithrombin (lupus anticoagulant) and an increased risk of agranulocytosis in patients carrying the human leukocyte antigen B27 genotype suggest that toxicity is immune-mediated. In this perspective, we provide an historical account of the levamisole/cocaine story as it first surfaced in 2008, including a succinct review of levamisole pharmacology, pharmacokinetics, and preclinical/clinical evidence for levamisole-induced agranulocytosis. Based on the available information on levamisole metabolism in humans, we propose that reactive metabolite formation is the rate-limiting step in the etiology of agranulocytosis associated with levamisole, in a manner similar to other drugs (e.g., propylthiouracil, methimazole, captopril, etc.) associated with blood dyscrasias. Finally, considering the toxicity associated with levamisole, we propose that the 2,3,5,6-tetrahydroimidazo[2,1-b]thiazole scaffold found in levamisole be categorized as a new structural alert, which is to be avoided in drug design.
In vitro-in vivo correlation (IVIVC) of intrinsic clearance in preclinical species of rat and dog was established using the hepatocyte relay method to support high-confidence prediction of human pharmacokinetics for low-clearance compounds. Good IVIVC of intrinsic clearance was observed for most of the compounds, with predicted values within 2-fold of the observed values. The exceptions involved transporter-mediated uptake clearance or metabolizing enzymes with extensive extrahepatic contribution. This is the first assay available to address low clearance challenges in preclinical species for IVIVC in drug discovery. It extends the utility of the hepatocyte relay method in addressing low clearance issues.
The SARS-CoV-2 3CL protease is a critical drug target for small molecule COVID-19 therapy, given its likely druggability and essentiality in the viral maturation and replication cycle. Based on the conservation of 3CL protease substrate binding pockets across coronaviruses and using screening, we identified four structurally distinct lead compounds that inhibit SARS-CoV-2 3CL protease. After evaluation of their binding specificity, cellular antiviral potency, metabolic stability, and water solubility, we prioritized the GC376 scaffold as being optimal for optimization. We identified multiple drug-like compounds with <10 nM potency for inhibiting SARS-CoV-2 3CL and the ability to block SARS-CoV-2 replication in human cells, obtained co-crystal structures of the 3CL protease in complex with these compounds, and determined that they have pan-coronavirus activity. We selected one compound, termed coronastat, as an optimized lead and characterized it in pharmacokinetic and safety studies in vivo. Coronastat represents a new candidate for a small molecule protease inhibitor for the treatment of SARS-CoV-2 infection for eliminating pandemics involving coronaviruses.
Alterations in fat metabolism, in particular elevated plasma concentrations of free fatty acids and triglycerides (TG), have been implicated in the pathogenesis of Type 2 diabetes, obesity, and cardiovascular disease. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a member of the large family of membrane-bound O-acyltransferases, catalyzes the final step in triacylglycerol formation. In the intestine, DGAT1 is one of the acyltransferases responsible for the reesterficiation of dietary TG. Following a single dose of a selective pharmacological inhibitor of DGAT1, PF-04620110, a dose-dependent inhibition of TG and vitamin A absorption postprandially was demonstrated in rodents and human subjects. In C57/BL6J mice, acute DGAT1 inhibition alters the temporal and spatial pattern of dietary lipid absorption. To understand the impact of DGAT1 inhibition on enterocyte lipid metabolism, lipomic profiling was performed in rat intestine and plasma as well as human plasma. DGAT1 inhibition causes an enrichment of polyunsaturated fatty acids within the TG class of lipids. This pharmacological intervention gives us insight as to the role of DGAT1 in human dietary lipid absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.