New biostratigraphic data obtained from measured stratigraphic sections of Santonian through Maastrichtian age located along the west coast of North America necessitate changes to the currently accepted chronostratigraphic framework for this region of the North Pacifi c biotic province. We recognize and/or defi ne 12 molluscan zones over this interval of the Upper Cretaceous and propose revisions to the currently accepted integration of ammonite zones with global Upper Cretaceous magnetochrons. Our fi ndings demonstrate that there was signifi cantly more faunal interchange between the North American Pacifi c Coast and both the Western Interior and Gulf Coast regions of North America during the Late Cretaceous than has previously been recognized, and because of this, novel and direct biostratigraphic correlations can be made. These new faunal correla tions are augmented with the magneto stratigraphic record from Pacifi c Coast localities to arrive at better interregional correlation for the Upper Cretaceous globally. The new integration of the global polarity time scale with the local, west coast ammonite zonation now allows better correlation between sections both within the North Pacifi c province (but geographically far from our study areas) as well as to sections outside of the province itself. However, we note here that previous correlations between biostratigraphy and the top and bottom of magnetochron 33r in west coast North American sections appear to have been in error due to unrecognized, modern-day normal-fi eld overprint of originally reversed polarity in Upper Cretaceous sections. We reinterpret the position of this chron based on this new information.
The Cretaceous-Paleogene (K-Pg) mass extinction has been attributed to the impact of a large bolide at the end of the Cretaceous Period, although other potential causes have also been proposed, most notably climate change caused by Deccan Traps (India) fl ood volcanism. Reconstructing paleoclimate, particularly in terrestrial settings, has been hindered by a lack of reliable proxies. The recent development of carbonate clumped isotope paleothermometry has contributed to temperature reconstructions using geochemical proxies in terrestrial settings. We employ this method, along with new stratigraphic constraints, in the Hell Creek (Cretaceous) and overlying Fort Union (Paleogene) Formations (Montana, USA) to examine changes in temperature leading to and across the K-Pg boundary. We demonstrate that well-preserved ca. 66 Ma aragonitic bivalves serve as suitable paleoclimate archives. Although there are limitations in the stratigraphic availability of fossil bivalves for clumped isotope analysis, we record an apparent 8 °C decrease in summer temperatures over the last 300 k.y. of the Cretaceous that corresponds broadly with patterns observed in other paleotemperature proxies. This observed decrease plausibly could be explained by an absolute temperature decrease or by other environmental stresses on the organisms, but in either case suggests changing living conditions over the interval. Previously documented declines in vertebrate and invertebrate biodiversity occur over the same stratigraphic interval at this study location. These results are consistent with published models of the endCretaceous mass extinction in which destabilized ecosystems become more susceptible to an abrupt event like a bolide impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.