Modern chemical synthesis techniques have allowed for improved incorporation of nano‐scale additives into solid propellants. Various methods were implemented to incorporate titania nanoparticles into three representative ammonium perchlorate composite propellants (APCP), and the mechanical properties of each formulation were tested and compared to those of an analogous baseline. Advanced imaging techniques were applied to all particle synthesis methods to characterize particle size and particle network type and size. Uniaxial tensile testing was performed to measure propellant ultimate strength, ductility, and elastic modulus. In general, the addition of nano‐titania additives to the propellant decreased propellant strength and modulus, but improved ductility. Propellant formulations containing in‐situ titania exhibited an increase in ductility of 11 %, 286 %, and 186 % with a corresponding reduction in strength of 82 %, 52 %, and 17 % over analogous baselines. These trends corresponded to a simultaneous decrease in propellant density, indicating that when implementing nano‐sized additives, care must be taken to monitor the effect of the altered manufacturing techniques on propellant physical properties in addition to just monitoring burning rates. Tailoring of propellant manufacturing procedures and the addition of Tepanol bonding agent to an in‐situ APCP formulation fully recovered the propellant density and ultimate strength while retaining the enhanced ductility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.