Hydrodynamic interactions are crucial for determining the cooperative behavior of microswimmers at low Reynolds numbers. Here we provide a comprehensive analysis of the scaling laws and the strength of the interactions in the case of a pair of three-sphere swimmers. Both stroke-based and force-based elastic microswimmers are analyzed using an analytic perturbative approach, focusing on passive and active interactions. The former are governed by the cycle-averaged flow field of a single swimmer, which is dipolar at long range. However, at intermediate distances, with a cross-over at the order of 102 swimmer lengths, the quadrupolar field dominates which, notably, yields an increase of the swimming velocity compared to individual swimmers, even when the swimmers are one behind another. Furthermore, we find that active rotations resulting from the interplay of the time-resolved swimming stroke and the ambient flow fields and, even more prominently, active translations are model-dependent. A mapping between the stroke-based and force-based swimmers is only possible for the low driving frequency regime where the characteristic time scale is smaller than the viscous one. Finally, we find that the long-term behavior of the swimmers, while sensitive to the initial relative positioning, does not depend on the pusher or puller nature of the swimmer. These results clearly indicate that the behavior of swarms will depend on the swimmer model, which was hitherto not well appreciated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.